Halide Perovskite Light-emitting Devices: Ionic Doping and Nanostructuring in Single Layer LEC and Laser

Halide Perovskite Light-emitting Devices: Ionic Doping and Nanostructuring in Single Layer LEC and Laser

Author: Masoud Alahbakhshi

Publisher:

Published: 2022

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Metal halide perovskites, as a new type of hybrid semiconductors, have demonstrated promising optoelectronic properties for state-of-the-art and emerging photonic technologies such as pure color light-emitting diodes, cost-effective nano-lasers, and efficient photovoltaic devices. Owing to highly tunable emission wavelengths, high absorption coefficient, high exciton binding energy, narrow emission linewidth, and less expensive fabrication methods, perovskite materials are excellent choices for the next generation of optoelectronic applications. In this dissertation, we mainly focus on introducing and understanding the physics and processing of the perovskite lightemitting devices regarding their dynamic behavior associated with ionic doping and nanopatterning effects in perovskite materials. We begin by investigating a novel and facile approach to overcome some important limitations of Perovskite Light-Emitting Electrochemical Cells (PeLECs) such as intrinsic ion motion degradation, low brightness, and short operational lifetime. In this method, we leverage the advantages of new nanocomposite with an electrolyte polymer along with a lithium salt additive (LiPF6) incorporated into the CsPbBr3 perovskite structure in order to passivate and suppress the traps, defects, and pin-holes in perovskite thin films aiming to improve the morphology and achieve high-performance single layer PeLEC for green emission. By implementing the material characterization techniques, we scrutinize the optimization process for lithium salt additive and demonstrate the advantages of LiPF6 additive including high photoluminescence quantum yield (PLQY), and stable photoluminescence (PL) dynamics, electroluminescence (EL) stability, low hysteresis, and high efficiency of devices. Inspired by the successes of ionic additives in these types of PeLECs, we further investigate the operational stability of devices and reach 100 hours of operational lifetime which is a 5.6-fold improvement over devices with no LiPF6 additive. We further develop our research by utilizing a new synthesized ionic iridium complex to build a HostGuest system in PeLEC structure in order to effectively tune the color emission, improve the morphology and consequently increase the efficiency of PeLECs for future display applications. In the next part of this dissertation, we provide a unique method to construct a multilayer blue Perovskite Light-Emitting Diode (PeLED) by utilizing the electron and hole transport layers as well as Quasi-2D perovskite composition. We successfully show that implementing two long and small ligands into the 3D perovskite precursor can beneficially form both small and large n phases perovskite layers, for the selective energy transfer process, and eventually provide an extremely efficient blue PeLED device. The maximum 10% EQE, maximum luminance 5500 cd m-2 , and 170 min half lifetime (T50) operational stability have been demonstrated. In the last section, we present the novel nanoimprint lithography method in order to perform direct nanopatterning on halide perovskite thin films to create laser cavities. With a meticulous approach that includes a practical encapsulation method, we have exhibited the first demonstration of quasi-CW lasing from directly patterned perovskites with a high-quality cavity design.


Perovskite Light Emitting Diodes

Perovskite Light Emitting Diodes

Author: Hong Meng

Publisher: John Wiley & Sons

Published: 2024-01-03

Total Pages: 373

ISBN-13: 3527353208

DOWNLOAD EBOOK

Perovskite Light Emitting Diodes An introduction to revolutionary display technology Perovskite Light Emitting Diodes, commonly referred to as Pe-LEDs, leverage a perovskite nanocrystal core to engender a luminous and efficient diode, holding the potential to bring about a paradigm shift in the realm of display technology. In recent times, Pe-LEDs have garnered substantial industrial interest due to their intrinsic capability to exhibit a diverse array of colors with exceptional fidelity, their operation at low voltage thresholds, and their straightforward structural composition. The prospective implications for enabling cost-effective, heightened-performance flat-panel displays as well as flexible display solutions remain notably profound. Perovskite Light Emitting Diodes: Materials and Devices presents a comprehensive and insightful overview of these diodes and their multifaceted applications. Commencing with an incisive exploration of the historical trajectory of this technology, alongside a delineation of its foundational materials and intricate device architectures, this compendium provides a gateway into both contemporaneous state-of-the-art deployments and the vanguard of ongoing research endeavors directed towards charting future advancements. Perovskite Light Emitting Diodes readers will also find: Stability analysis for different Pe-LED devices, a key aspect of creating physical displays Authorship by an established expert in organic electronics Detailed discussion of perovskite preparation methods including ultrasonic, solvent heat, thermal injection, and many more Perovskite Light Emitting Diodes is ideal for materials scientists, electrical engineers, solid state chemists, solid state physicists, inorganic chemists, and any researchers or engineers working with display technology.


Halide Perovskite Semiconductors

Halide Perovskite Semiconductors

Author: Yuanyuan Zhou

Publisher: John Wiley & Sons

Published: 2023-12-22

Total Pages: 517

ISBN-13: 3527829032

DOWNLOAD EBOOK

Halide Perovskite Semiconductors Enables readers to acquire a systematic and in-depth understanding of various fundamental aspects of halide perovskite semiconductors Halide Perovskite Semiconductors: Structures, Characterization, Properties, and Phenomena covers the most fundamental topics with regards to halide perovskites, including but not limited to crystal/defect theory, crystal chemistry, heterogeneity, grain boundaries, single-crystals/thin-films/nanocrystals synthesis, photophysics, solid-state ionics, spin physics, chemical (in)stability, carrier dynamics, hot carriers, surface and interfaces, lower-dimensional structures, and structural/functional characterizations. Included discussions on the fundamentals of halide perovskites aim to expand the basic science fields of physics, chemistry, and materials science. Edited by two highly qualified researchers, Halide Perovskite Semiconductors includes specific information on: Crystal/defect theory of halide perovskites, crystal chemistry of halide perovskites, and processing and microstructures of halide perovskites Single-crystals of halide perovskites, nanocrystals of halide perovskites, low-dimensional perovskite crystals, and nanoscale heterogeneity of halide perovskites Carrier mobilities and dynamics in halide perovskites, light emission of halide perovskites, photophysics and ultrafast spectroscopy of halide perovskites Hot carriers in halide perovskites, correlating photophysics with microstructures in halide perovskites, chemical stability of halide perovskites, and solid-state ionics of halide perovskites Readers can find solutions to technological issues and challenges based on the fundamental knowledge gained from this book. As such, Halide Perovskite Semiconductors is an essential in-depth treatment of the subject, ideal for solid-state chemists, materials scientists, physical chemists, inorganic chemists, physicists, and semiconductor physicists.


Halide Perovskites

Halide Perovskites

Author: Tze-Chien Sum

Publisher: John Wiley & Sons

Published: 2019-03-25

Total Pages: 312

ISBN-13: 3527341110

DOWNLOAD EBOOK

Real insight from leading experts in the field into the causes of the unique photovoltaic performance of perovskite solar cells, describing the fundamentals of perovskite materials and device architectures. The authors cover materials research and development, device fabrication and engineering methodologies, as well as current knowledge extending beyond perovskite photovoltaics, such as the novel spin physics and multiferroic properties of this family of materials. Aimed at a better and clearer understanding of the latest developments in the hybrid perovskite field, this is a must-have for material scientists, chemists, physicists and engineers entering or already working in this booming field.


Color Tuning for Perovskite Light-Emitting Diodes

Color Tuning for Perovskite Light-Emitting Diodes

Author: Hongling Yu

Publisher: Linköping University Electronic Press

Published: 2020-11-11

Total Pages: 72

ISBN-13: 9179298095

DOWNLOAD EBOOK

Metal halide perovskites (MHPs) are recognized as promising semiconductor materials for a variety of optical and electrical device applications due to their cost-effective and outstanding optoelectronic properties. As one of the most significant applications, perovskite light-emitting diodes (PeLEDs) hold promise for future lighting and display technologies, attributed to their high photoluminescence quantum yield (PLQY), high color purity, and tunable emission color. The emission colors of PeLEDs can be tuned by mixing the halide anions, adjusting the size of perovskite nanocrystals, or changing the dimensionality of perovskites. However, in practice, all these different approaches have their own advantages and challenges. This thesis centres around the color tunability of perovskites, aiming to develop PeLEDs with different colors using different approaches. We first demonstrate red and near-infrared PeLEDs using a straightforward approach – in situ solution-processed perovskite quantum dots (PQDs). PQDs prepared from colloidal approaches are widely reported and used in LEDs. In contrast, PQDs prepared from the in situ approaches are hardly reported, although they have advantages for device applications. By employing aromatic ammonium iodide (1-naphthylmethyl ammonium iodide, NMAI) as an agent into perovskite precursor solutions, together with annealing temperature modulation, we obtain in situ grown PQDs delivering high external quantum efficiencies (EQEs) of up to 11.0% with tunable electroluminescence (EL) spectra (667 - 790 nm). Our in situ generated PQDs based on pure-halogen perovskites can be easily obtained through a simple deposition process and free of phase segregation, making them a more promising approach for tuning the emission colors of perovskite LEDs. We then move to blue PeLEDs using cesium-based mixed-Br/Cl perovskites. Although mixed halides are a straightforward strategy to tune the emission color, PeLEDs based on this approach suffer from poor color stability, which is attributed to surface defects at grain boundaries. Under the condition of optical excitations, light density over a certain value (a threshold), oxygen, and surface defects at perovskite grain boundaries are found to be key factors inducing photoluminescence (PL) spectral instability of CsPb(Br1?xClx)3 perovskites. Upon electrical bias, defects at grain boundaries provide undesirable halide migration channels, responsible for EL spectral instability issues. Through effective defect passivation, the PL spectral resistance to oxygen is enhanced; moreover, high-performance and color-stable blue PeLEDs are achieved, delivering a maximum luminance of 5351 cd m–2 and a peak EQE of 4.55% with a peak emission wavelength at 489 nm. These findings provide new insights into the color instability issue of mixed halide blue perovskites, against which we also demonstrate an effective strategy. We finally realize single-emissive-layer (EML) white PeLEDs by employing a mixed halide perovskite film as the EML. In spite of high-performance monochromatic blue, green, and red colors, the development of white PeLEDs, especially for single-EML ones, remains a very big challenge. By effective modulation of the halide salt precursors, we achieve single-EML white PeLEDs with Commission Internationale de L’Eclairage (CIE) coordinates of (0.33, 0.33), close to those (0.3128, 0.3290) of the CIE standard illuminant D65. This work not only provides a successful demonstration of a single-EML white PeLED, but also provides useful guidelines for the future development of highperformance single-EML white PeLEDs.


Low-Dimensional Halide Perovskites

Low-Dimensional Halide Perovskites

Author: Yiqiang Zhan

Publisher: Elsevier

Published: 2022-11-15

Total Pages: 510

ISBN-13: 0323885225

DOWNLOAD EBOOK

Low-Dimensional Halide Perovskites: Structure, Properties and Applications provides an in-depth look at halide perovskite materials and their applications. Chapters cover history, fundamentals, physiochemical and optoelectronic properties, their synthesis and characterization, and Pb-free perovskites and their green syntheses. The book concludes with sections describing the different applications of halide perovskites for solar cells, light-emitting diodes and photo detectors, as well as the challenges faced in the industrialization of halide perovskite-based devices and forward-thinking prospects for further deployment. Discusses the applications of halide perovskites according to their dimensionality Includes a look at current challenges for the commercialization of halide perovskites, while also previewing some possible solutions Presents alternative environmentally-friendly materials that can used to replace the current toxic materials-based halide perovskites


Lead Halide Perovskite Solar Cells

Lead Halide Perovskite Solar Cells

Author: David J. Fisher

Publisher: Materials Research Forum LLC

Published: 2020-06-05

Total Pages: 130

ISBN-13: 1644900815

DOWNLOAD EBOOK

Lead halide perovskite materials have a huge potential in solar cell technology. They offer the combined advantages of low-cost preparation and high power-conversion efficiency. The present review focusses on the following topics: Power Conversion Efficiency; Electron Transport, Hole Transport and Interface Layers; Material Preparation; Cesium-Doped Lead-Halide Perovskites; Formamidinium-Doped Lead-Halide Perovskites; Methylammonium Lead-Halide Perovskites; Hysteresis, Stability and Toxicity Problems. The book references 334 original resources and includes their direct web link for in-depth reading. Keywords: Solar Cells, Lead Halide Perovskite Materials, Cesium-Doped Lead-Halide Perovskites, Formamidinium-Doped Lead-Halide Perovskites, Methylammonium Lead-Halide Perovskites, Electron-Transport Layer, Hole-Transport Layer, Interface Layers, Hysteresis Problem, Stability Problem, Toxicity Problem.


Multifunctional Organic–Inorganic Halide Perovskite

Multifunctional Organic–Inorganic Halide Perovskite

Author: Nam-Gyu Park

Publisher: CRC Press

Published: 2022-03-10

Total Pages: 238

ISBN-13: 1000562328

DOWNLOAD EBOOK

Perovskite is a well-known structure with the chemical formula ABX3, where A and B are cations coordinated with 12 and 6 anions, respectively, and X is an anion. When a halogen anion is used, the monovalent A and divalent B cations can be stabilized with respect to a tolerance factor ranging from ~0.8 to 1. Since the first report on ~10% efficiency and long-term stability of solid-state perovskite solar cells (PSCs) in 2012 and two subsequent seed reports on perovskite-sensitized solar cells in 2009 and 2011, PSCs have received increasing attention. The power conversion efficiency of PSCs was certified to be more than 25% in 2020, surpassing thin-film solar cell technologies. Methylammonium or formamidinium organic ion–based lead iodide perovskite has been used for high-efficiency PSCs. The first report on solid-state PSCs triggered perovskite photovoltaics, leading to more than 23,000 publications as of October 2021. In addition, halide perovskite has shown excellent performance when applied to light-emitting diodes (LEDs), photodetectors, and resistive memory, indicating that halide perovskite is multifunctional. This book explains the electro-optical and ferroelectric properties of perovskite and details the recent progress in scalable and tandem PSCs as well as perovskite LEDs and resistive memory. It is a useful textbook and self-help study guide for advanced undergraduate- and graduate-level students of materials science and engineering, chemistry, chemical engineering, and nanotechnology; for researchers in photovoltaics, LEDs, resistive memory, and perovskite-related opto-electronics; and for general readers who wish to gain knowledge about halide perovskite.


Coupling of Ionic and Electronic Processes in Lead Halide Perovskite Devices and Nanostructures

Coupling of Ionic and Electronic Processes in Lead Halide Perovskite Devices and Nanostructures

Author: Ross Everett Haroldson

Publisher:

Published: 2021

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Lead Halide Perovskites (LHPs) such as Methylammonium Lead Iodide (MAPbI3) or Cesium Lead Bromide (CsPbBr3) have garnered massive attention from researchers in photovoltaic, light emitting, and other optoelectronic fields as an interesting class of materials with attractive semiconducting and optical properties. Fabrication processes of LHPs are relatively simple compared to conventional inorganic semiconductors and don’t require powerful or expensive equipment which is promising for commercial development. However, they have shown dynamic performance behaviors and instabilities that have yet to be fully understood. These dynamic behaviors on the time scale of seconds have been attributed to their mobile charged point defects redistributing themselves during device operation. The ions (or charged defects) act as mobile intrinsic donors and acceptors that can be utilized in device operations. This thesis discusses the physical origin that strongly couples the electronic and ionic transport of LHPs and demonstrates devices that exploit and utilize this coupling. This coupling enables the dual functionality of mixed halide solar cells to also act as effective light emitting devices. We also demonstrate that utilizing extrinsic ionic salts such as lithium hexafluorophosphate (LiPF6) can serve as sacrificial ions that help protect the bulk of the perovskite from fast degradation. We studied the dynamic performance of LHP optoelectronic devices configured as perovskite lightemitting electrochemical cells (PeLECs) under various temperatures and conditions. We develop novel equivalent circuit models to extract the diffusion coefficients and concentrations of dominant ionic species at play in PeLEC devices in vacuum and dry air, in the dark or under illumination, and at different temperatures. Activation energies of ionic species in PeLECs were calculated by the temperature dependence of fitted parameters from diffusion elements in the equivalent circuits used to model impedance spectroscopy measurements. This thesis advances the knowledge and understanding of ion migration (or charged point defect transport) in LHP devices and how it affects their performance.


Differential Ion Motion in Perovskite Light Emitting Electrochemical Cells

Differential Ion Motion in Perovskite Light Emitting Electrochemical Cells

Author: Aditya Mishra

Publisher:

Published: 2022

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Perovskite light emitting diodes (PeLED) have shown promising progress as next-generation efficient electroluminescent devices. However, PeLEDs suffer from low lifetimes and color instability during operation that limits its insertion into most practical applications. To address this concern, I investigated a form of perovskite light-emitting device termed perovskite light-emitting electrochemical cells (PeLECs) that utilize a phenomenon of selective differential ion motion in perovskite devices. I have been exploring an interesting phenomenon of “differential ion motion” in PeLECs, where under applied bias, additive ions (LiPF6) selectively move while restricting the motion of intrinsic perovskite ions. This interplay of intrinsic and additive ions enhances the efficiency and operational stability of PeLECs. In differential ion motion, the perovskite structure remains stable while sacrificial additive ions move in response to the applied electric field. These additive ions accumulate at respective electrodes (anions at anode and cations at the cathode) and improve electronic charge injection (electron and holes) by the formation of electrical double layers (EDLs) at the electrode interfaces. Specifically, I fabricated and characterized PeLECs, directly measuring their luminance-currentvoltage characteristics, quantum efficiency, power efficiency, electroluminescence (EL) spectra, operational stability. To understand the fundamental materials science behind device performance, I have performed numerous materials and device characterizations such as electron microscopy (SEM, TEM), spectroscopy (XPS, UV-Vis), crystallography (XRD), force microscopy (AFM), reliability testing, electrochemical circuit design, and photoluminescence (PL) spectra, lifetime, and quantum yield. We demonstrated that optimized Li salt additive improves thin film morphology, increases PL stability and quantum yield, reduces charge traps, and strengthens the perovskite chemical bonding. Then, we hypothesized differential ion motion phenomenon and showed long lifetimes at constant current, calculated EDLs thickness by using electrochemical impedance circuit model. We also demonstrated voltage-controlled color-tunable perovskite host-ionic guest (Ir-ionic transition metal complex) LECs. We observed the benefits of differential ion motion in pure blue light-emitting mixed-halide perovskite, where we effectively suppressed detrimental halide segregation under intense photoexcitation and electrical bias that facilitated us to obtain longawaited stable blue PeLECs satisfying technological emission standards. Additionally, we integrated highly emissive zero-dimensional perovskite into a 3D perovskite matrix through a novel solvent engineering method that demonstrated high quantum efficiency and operational stability facilitated by differential ion motion. PeLECs have shown superior operational stability (initial luminance level of 3200 cd/m2, 120 h— extrapolates to 30,000 h half-life at 100 cd/m2, the common industrial benchmark for a lifetime) and high color-purity (Full-width half maximum of EL spectra ≤ 18 nm). Pure Blue emission from PeLECs meets all the National Television System Committee (NTSC) requirements. These PeLECs are simple single-layer devices that offer ease of processing (low-temperature and costeffective) for facile fabrication of large-area display and lighting applications. Leveraging differential ion motion in PeLECs demonstrates a new pathway of utilizing simple and smart, wearable devices for the internet of things (IoT) for digital communication and fashion.