Hadronic Physics from Lattice QCD

Hadronic Physics from Lattice QCD

Author: Anthony M. Green

Publisher: World Scientific

Published: 2004

Total Pages: 386

ISBN-13: 981256022X

DOWNLOAD EBOOK

- Several of the authors give elementary introductions that lead to some duplication. This we believe is a positive feature since each author presents a different viewpoint emphasizing the particular topic of that chapter - The topics chosen are the closest Lattice QCD comes to more conventional particle and nuclear physics - The numerical results presented in the various chapters are most up-to-date


Lattice Hadron Physics

Lattice Hadron Physics

Author: Alex Kalloniatis

Publisher: Springer Science & Business Media

Published: 2005-05-20

Total Pages: 252

ISBN-13: 9783540239116

DOWNLOAD EBOOK

Lattice Hadron Physics draws upon the developments made in recent years in implementing chirality on the lattice via the overlap formalism. These developments exploit chiral effective field theory in order to extrapolate lattice results to physical quark masses, new forms of improving operators to remove lattice artefacts, analytical studies of finite-volume effects in hadronic observables, and state-of-the-art lattice calculations of excited resonances. This volume, comprised of selected lectures, is designed to assist those outside the field who want quickly to become literate in these topics. As such, it provides graduate students and experienced researchers in other areas of hadronic physics with the background through which they can appreciate, if not become active in, contemporary lattice-gauge theory and its applications to hadronic phenomena.


Lattice QCD for Nuclear Physics

Lattice QCD for Nuclear Physics

Author: Huey-Wen Lin

Publisher: Springer

Published: 2014-11-21

Total Pages: 255

ISBN-13: 3319080229

DOWNLOAD EBOOK

With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spectroscopy and structure, many-body systems, together with more topical lectures in nuclear physics aimed a providing a broad phenomenological background. Exercises to encourage hands-on experience with parallel computing and data analysis are included.


Improved Methods for the Study of Hadronic Physics from Lattice QCD.

Improved Methods for the Study of Hadronic Physics from Lattice QCD.

Author:

Publisher:

Published: 2015

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The solution of QCD on a lattice provides a first-principles method for understanding QCD in the low-energy regime, and is thus an essential tool for nuclear physics. The generation of gauge configurations, the starting point for lattice calculations, requires the most powerful leadership-class computers available. However, to fully exploit such leadership-class computing requires increasingly sophisticated methods for obtaining physics observables from the underlying gauge ensembles. In this study, we describe a variety of recent methods that have been used to advance our understanding of the spectrum and structure of hadrons through lattice QCD.


Lattice Hadron Physics

Lattice Hadron Physics

Author: Alex Kalloniatis

Publisher: Springer

Published: 2009-09-02

Total Pages: 232

ISBN-13: 9783540805298

DOWNLOAD EBOOK

Lattice Hadron Physics draws upon the developments made in recent years in implementing chirality on the lattice via the overlap formalism. These developments exploit chiral effective field theory in order to extrapolate lattice results to physical quark masses, new forms of improving operators to remove lattice artefacts, analytical studies of finite-volume effects in hadronic observables, and state-of-the-art lattice calculations of excited resonances. This volume, comprised of selected lectures, is designed to assist those outside the field who want quickly to become literate in these topics. As such, it provides graduate students and experienced researchers in other areas of hadronic physics with the background through which they can appreciate, if not become active in, contemporary lattice-gauge theory and its applications to hadronic phenomena.


Quantum Chromodynamics on the Lattice

Quantum Chromodynamics on the Lattice

Author: Christof Gattringer

Publisher: Springer

Published: 2009-10-03

Total Pages: 352

ISBN-13: 3642018505

DOWNLOAD EBOOK

This introduction to quantum chromodynamics presents the basic concepts and calculations in a clear and didactic style accessible to those new to the field. Readers will find useful methods for obtaining numerical results, including pure gauge theory and quenched spectroscopy.


Lattice QCD Study for the Relation Between Confinement and Chiral Symmetry Breaking

Lattice QCD Study for the Relation Between Confinement and Chiral Symmetry Breaking

Author: Takahiro Doi

Publisher: Springer

Published: 2017-10-10

Total Pages: 69

ISBN-13: 9811065969

DOWNLOAD EBOOK

This thesis focuses on an unresolved problem in particle and nuclear physics: the relation between two important non-perturbative phenomena in quantum chromodynamics (QCD) – quark confinement and chiral symmetry breaking. The author develops a new analysis method in the lattice QCD, and derives a number of analytical formulae to express the order parameters for quark confinement, such as the Polyakov loop, its fluctuations, and the Wilson loop in terms of the Dirac eigenmodes closely related to chiral symmetry breaking. Based on the analytical formulae, the author analytically as well as numerically shows that at finite temperatures there is no direct one-to-one correspondence between them. The thesis describes this extraordinary achievement using the first-principle analysis, and proposes a possible new phase in which quarks are confined and chiral symmetry is restored.


Functional Analysis and Optimization Methods in Hadron Physics

Functional Analysis and Optimization Methods in Hadron Physics

Author: Irinel Caprini

Publisher: Springer

Published: 2019-04-25

Total Pages: 130

ISBN-13: 3030189481

DOWNLOAD EBOOK

This book begins with a brief historical review of the early applications of standard dispersion relations in particle physics. It then presents the modern perspective within the Standard Model, emphasizing the relation of analyticity together with alternative tools applied to strong interactions, such as perturbative and lattice quantum chromodynamics (QCD), as well as chiral perturbation theory. The core of the book argues that, in order to improve the prediction of specific hadronic observables, it is often necessary to resort to methods of complex analysis more sophisticated than the simple Cauchy integral. Accordingly, a separate mathematical chapter is devoted to solving several functional analysis optimization problems. Their applications to physical amplitudes and form factors are discussed in the following chapters, which also demonstrate how to merge the analytic approach with statistical analysis tools. Given its scope, the book offers a valuable guide for researchers working in precision hadronic physics, as well as graduate students who are new to the field.


Particle Physics Reference Library

Particle Physics Reference Library

Author: Herwig Schopper

Publisher: Springer Nature

Published: 2020

Total Pages: 632

ISBN-13: 3030382079

DOWNLOAD EBOOK

This first open access volume of the handbook series contains articles on the standard model of particle physics, both from the theoretical and experimental perspective. It also covers related topics, such as heavy-ion physics, neutrino physics and searches for new physics beyond the standard model. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access