With a weight-of-the-evidence approach, cancer risk assessment indentifies hazards, determines dose-response relationships, and assesses exposure to characterize the true risk. This book focuses on the quantitative methods for conducting chemical cancer risk assessments for solvents, metals, mixtures, and nanoparticles. It links these to the basic toxicology and biology of cancer, along with the impacts on regulatory guidelines and standards. By providing insightful perspective, Cancer Risk Assessment helps researchers develop a discriminate eye when it comes to interpreting data accurately and separating relevant information from erroneous.
Risk assessment has become a dominant public policy tool for making choices, based on limited resources, to protect public health and the environment. It has been instrumental to the mission of the U.S. Environmental Protection Agency (EPA) as well as other federal agencies in evaluating public health concerns, informing regulatory and technological decisions, prioritizing research needs and funding, and in developing approaches for cost-benefit analysis. However, risk assessment is at a crossroads. Despite advances in the field, risk assessment faces a number of significant challenges including lengthy delays in making complex decisions; lack of data leading to significant uncertainty in risk assessments; and many chemicals in the marketplace that have not been evaluated and emerging agents requiring assessment. Science and Decisions makes practical scientific and technical recommendations to address these challenges. This book is a complement to the widely used 1983 National Academies book, Risk Assessment in the Federal Government (also known as the Red Book). The earlier book established a framework for the concepts and conduct of risk assessment that has been adopted by numerous expert committees, regulatory agencies, and public health institutions. The new book embeds these concepts within a broader framework for risk-based decision-making. Together, these are essential references for those working in the regulatory and public health fields.
Despite increasing knowledge of human nutrition, the dietary contribution to cancer remains a troubling question. Carcinogens and Anticarcinogens assembles the best available information on the magnitude of potential cancer riskâ€"and potential anticarcinogenic effectâ€"from naturally occurring chemicals compared with risk from synthetic chemical constituents. The committee draws important conclusions about diet and cancer, including the carcinogenic role of excess calories and fat, the anticarcinogenic benefit of fiber and other substances, and the impact of food additive regulation. The book offers recommendations for epidemiological and diet research. Carcinogens and Anticarcinogens provides a readable overview of issues and addresses critical questions: Does diet contribute to an appreciable proportion of human cancer? Are there significant interactions between carcinogens and anticarcinogens in the diet? The volume discusses the mechanisms of carcinogenic and anticarcinogenic properties and considers whether techniques used to evaluate the carcinogenic potential of synthetics can be used with naturally occurring chemicals. The committee provides criteria for prioritizing the vast number of substances that need to be tested. Carcinogens and Anticarcinogens clarifies the issues and sets the direction for further investigations into diet and cancer. This volume will be of interest to anyone involved in food and health issues: policymakers, regulators, researchers, nutrition professionals, and health advocates.
Though overall cancer incidence and mortality have continued to decline in recent years, cancer continues to devastate the lives of far too many Americans. In 2009 alone, 1.5 million American men, women, and children were diagnosed with cancer, and 562,000 died from the disease. There is a growing body of evidence linking environmental exposures to cancer. The Pres. Cancer Panel dedicated its 2008¿2009 activities to examining the impact of environmental factors on cancer risk. The Panel considered industrial, occupational, and agricultural exposures as well as exposures related to medical practice, military activities, modern lifestyles, and natural sources. This report presents the Panel¿s recommend. to mitigate or eliminate these barriers. Illus.
Presents state-of-the-art regulatory cancer risk assessment models including a biologically based model for two-hit carcinogenesis and cell proliferation! This book comprehensively reviews the various roles of genetic toxicology in human cancer risk assessment conducted by United States and worldwide regulatory agencies-discussing hazard identification, dose-response relationships, exposure assessment, and current practices of risk characterization. Examines predictive values of mutagenicity tests, mechanisms of carcinogenesis, and conventional genotoxicity tests required by the International Conference on Harmonization and the Organization for Economic Cooperation and Development/Environmental Protection Agency guidelines! Comprised of contributions from prominent experts and risk assessors and including nearly 1200 references to facilitate further study, Genetic Toxicology and Cancer Risk Assessment reviews contemporary human cancer genetics as related to the mutagenic nature of carcinogenesis calculates acceptable exposure levels based on a carcinogenic threshold dose for nongenotoxic carcinogens reveals the rationale and methodology of quantitative estimation of human cancer risks using mathematical models discusses the threshold concept of carcinogenesis demonstrates how bacterial mutagenicity assays are the most reliable for predicting rodent carcinogens considers structural activity relationship (SAR) analysis of chemical carcinogenicity describes the emergence of the mouse lymphoma microwell and in vitro micronucleus assays illustrates the use of genetic biomarkers for dosimetry analysis and more! Linking human cancer genetics, mutagenicity assays, mechanisms of carcinogenesis, carcinogenic thresholds, molecular epidemiology, mathematical modeling, and quantitative cancer risk analysis, Genetic Toxicology and Cancer Risk Assessment is a must-have reference for toxicologists; oncologists; geneticists; biostatisticians; reproductive, developmental, cell, and molecular biologists; endocrinologists; biochemists; and upper-level undergraduate, graduate, and medical school students in these disciplines.
The public depends on competent risk assessment from the federal government and the scientific community to grapple with the threat of pollution. When risk reports turn out to be overblownâ€"or when risks are overlookedâ€"public skepticism abounds. This comprehensive and readable book explores how the U.S. Environmental Protection Agency (EPA) can improve its risk assessment practices, with a focus on implementation of the 1990 Clean Air Act Amendments. With a wealth of detailed information, pertinent examples, and revealing analysis, the volume explores the "default option" and other basic concepts. It offers two views of EPA operations: The first examines how EPA currently assesses exposure to hazardous air pollutants, evaluates the toxicity of a substance, and characterizes the risk to the public. The second, more holistic, view explores how EPA can improve in several critical areas of risk assessment by focusing on cross-cutting themes and incorporating more scientific judgment. This comprehensive volume will be important to the EPA and other agencies, risk managers, environmental advocates, scientists, faculty, students, and concerned individuals.
Toxicity testing in laboratory animals provides much of the information used by the Environmental Protection Agency (EPA) to assess the hazards and risks associated with exposure to environmental agents that might harm public health or the environment. The data are used to establish maximum acceptable concentrations of environmental agents in drinking water, set permissible limits of exposure of workers, define labeling requirements, establish tolerances for pesticides residues on food, and set other kinds of limits on the basis of risk assessment. Because the number of regulations that require toxicity testing is growing, EPA called for a comprehensive review of established and emerging toxicity-testing methods and strategies. This interim report reviews current toxicity-testing methods and strategies and near-term improvements in toxicity-testing approaches proposed by EPA and others. It identifies several recurring themes and questions in the various reports reviewed. The final report will present a long-range vision and strategic plan to advance the practices of toxicity testing and human health assessment of environmental contaminants.