Guide to Elliptic Curve Cryptography

Guide to Elliptic Curve Cryptography

Author: Darrel Hankerson

Publisher: Springer Science & Business Media

Published: 2006-06-01

Total Pages: 328

ISBN-13: 0387218467

DOWNLOAD EBOOK

After two decades of research and development, elliptic curve cryptography now has widespread exposure and acceptance. Industry, banking, and government standards are in place to facilitate extensive deployment of this efficient public-key mechanism. Anchored by a comprehensive treatment of the practical aspects of elliptic curve cryptography (ECC), this guide explains the basic mathematics, describes state-of-the-art implementation methods, and presents standardized protocols for public-key encryption, digital signatures, and key establishment. In addition, the book addresses some issues that arise in software and hardware implementation, as well as side-channel attacks and countermeasures. Readers receive the theoretical fundamentals as an underpinning for a wealth of practical and accessible knowledge about efficient application. Features & Benefits: * Breadth of coverage and unified, integrated approach to elliptic curve cryptosystems * Describes important industry and government protocols, such as the FIPS 186-2 standard from the U.S. National Institute for Standards and Technology * Provides full exposition on techniques for efficiently implementing finite-field and elliptic curve arithmetic * Distills complex mathematics and algorithms for easy understanding * Includes useful literature references, a list of algorithms, and appendices on sample parameters, ECC standards, and software tools This comprehensive, highly focused reference is a useful and indispensable resource for practitioners, professionals, or researchers in computer science, computer engineering, network design, and network data security.


Modern Cryptography and Elliptic Curves

Modern Cryptography and Elliptic Curves

Author: Thomas R. Shemanske

Publisher: American Mathematical Soc.

Published: 2017-07-31

Total Pages: 266

ISBN-13: 1470435829

DOWNLOAD EBOOK

This book offers the beginning undergraduate student some of the vista of modern mathematics by developing and presenting the tools needed to gain an understanding of the arithmetic of elliptic curves over finite fields and their applications to modern cryptography. This gradual introduction also makes a significant effort to teach students how to produce or discover a proof by presenting mathematics as an exploration, and at the same time, it provides the necessary mathematical underpinnings to investigate the practical and implementation side of elliptic curve cryptography (ECC). Elements of abstract algebra, number theory, and affine and projective geometry are introduced and developed, and their interplay is exploited. Algebra and geometry combine to characterize congruent numbers via rational points on the unit circle, and group law for the set of points on an elliptic curve arises from geometric intuition provided by Bézout's theorem as well as the construction of projective space. The structure of the unit group of the integers modulo a prime explains RSA encryption, Pollard's method of factorization, Diffie–Hellman key exchange, and ElGamal encryption, while the group of points of an elliptic curve over a finite field motivates Lenstra's elliptic curve factorization method and ECC. The only real prerequisite for this book is a course on one-variable calculus; other necessary mathematical topics are introduced on-the-fly. Numerous exercises further guide the exploration.


Elliptic Curves

Elliptic Curves

Author: Lawrence C. Washington

Publisher: CRC Press

Published: 2008-04-03

Total Pages: 533

ISBN-13: 1420071475

DOWNLOAD EBOOK

Like its bestselling predecessor, Elliptic Curves: Number Theory and Cryptography, Second Edition develops the theory of elliptic curves to provide a basis for both number theoretic and cryptographic applications. With additional exercises, this edition offers more comprehensive coverage of the fundamental theory, techniques, and application


Random Curves

Random Curves

Author: Neal Koblitz

Publisher: Springer Science & Business Media

Published: 2009-05-03

Total Pages: 393

ISBN-13: 3540740783

DOWNLOAD EBOOK

Neal Koblitz is a co-inventor of one of the two most popular forms of encryption and digital signature, and his autobiographical memoirs are collected in this volume. Besides his own personal career in mathematics and cryptography, Koblitz details his travels to the Soviet Union, Latin America, Vietnam and elsewhere; political activism; and academic controversies relating to math education, the C. P. Snow "two-culture" problem, and mistreatment of women in academia. These engaging stories fully capture the experiences of a student and later a scientist caught up in the tumultuous events of his generation.


Handbook of Elliptic and Hyperelliptic Curve Cryptography

Handbook of Elliptic and Hyperelliptic Curve Cryptography

Author: Henri Cohen

Publisher: CRC Press

Published: 2005-07-19

Total Pages: 843

ISBN-13: 1420034987

DOWNLOAD EBOOK

The discrete logarithm problem based on elliptic and hyperelliptic curves has gained a lot of popularity as a cryptographic primitive. The main reason is that no subexponential algorithm for computing discrete logarithms on small genus curves is currently available, except in very special cases. Therefore curve-based cryptosystems require much smaller key sizes than RSA to attain the same security level. This makes them particularly attractive for implementations on memory-restricted devices like smart cards and in high-security applications. The Handbook of Elliptic and Hyperelliptic Curve Cryptography introduces the theory and algorithms involved in curve-based cryptography. After a very detailed exposition of the mathematical background, it provides ready-to-implement algorithms for the group operations and computation of pairings. It explores methods for point counting and constructing curves with the complex multiplication method and provides the algorithms in an explicit manner. It also surveys generic methods to compute discrete logarithms and details index calculus methods for hyperelliptic curves. For some special curves the discrete logarithm problem can be transferred to an easier one; the consequences are explained and suggestions for good choices are given. The authors present applications to protocols for discrete-logarithm-based systems (including bilinear structures) and explain the use of elliptic and hyperelliptic curves in factorization and primality proving. Two chapters explore their design and efficient implementations in smart cards. Practical and theoretical aspects of side-channel attacks and countermeasures and a chapter devoted to (pseudo-)random number generation round off the exposition. The broad coverage of all- important areas makes this book a complete handbook of elliptic and hyperelliptic curve cryptography and an invaluable reference to anyone interested in this exciting field.


Implementing Elliptic Curve Cryptography

Implementing Elliptic Curve Cryptography

Author: Michael Rosing

Publisher: Manning Publications

Published: 1999

Total Pages: 0

ISBN-13: 9781884777691

DOWNLOAD EBOOK

Implementing Elliptic Curve Cryptography proceeds step-by- step to explain basic number theory, polynomial mathematics, normal basis mathematics and elliptic curve mathematics. With these in place, applications to cryptography are introduced. The book is filled with C code to illustrate how mathematics is put into a computer, and the last several chapters show how to implement several cryptographic protocols. The most important is a description of P1363, an IEEE draft standard for public key cryptography. The main purpose of Implementing Elliptic Curve Cryptography is to help "crypto engineers" implement functioning, state-of-the- art cryptographic algorithms in the minimum time.


Elliptic Curves in Cryptography

Elliptic Curves in Cryptography

Author: Ian F. Blake

Publisher: Cambridge University Press

Published: 1999-07-08

Total Pages: 228

ISBN-13: 9780521653749

DOWNLOAD EBOOK

This book summarizes knowledge built up within Hewlett-Packard over a number of years, and explains the mathematics behind practical implementations of elliptic curve systems. Due to the advanced nature of the mathematics there is a high barrier to entry for individuals and companies to this technology. Hence this book will be invaluable not only to mathematicians wanting to see how pure mathematics can be applied but also to engineers and computer scientists wishing (or needing) to actually implement such systems.


Serious Cryptography

Serious Cryptography

Author: Jean-Philippe Aumasson

Publisher: No Starch Press

Published: 2017-11-06

Total Pages: 313

ISBN-13: 1593278268

DOWNLOAD EBOOK

This practical guide to modern encryption breaks down the fundamental mathematical concepts at the heart of cryptography without shying away from meaty discussions of how they work. You’ll learn about authenticated encryption, secure randomness, hash functions, block ciphers, and public-key techniques such as RSA and elliptic curve cryptography. You’ll also learn: - Key concepts in cryptography, such as computational security, attacker models, and forward secrecy - The strengths and limitations of the TLS protocol behind HTTPS secure websites - Quantum computation and post-quantum cryptography - About various vulnerabilities by examining numerous code examples and use cases - How to choose the best algorithm or protocol and ask vendors the right questions Each chapter includes a discussion of common implementation mistakes using real-world examples and details what could go wrong and how to avoid these pitfalls. Whether you’re a seasoned practitioner or a beginner looking to dive into the field, Serious Cryptography will provide a complete survey of modern encryption and its applications.


Mathematics of Public Key Cryptography

Mathematics of Public Key Cryptography

Author: Steven D. Galbraith

Publisher: Cambridge University Press

Published: 2012-03-15

Total Pages: 631

ISBN-13: 1107013925

DOWNLOAD EBOOK

This advanced graduate textbook gives an authoritative and insightful description of the major ideas and techniques of public key cryptography.


An Introduction to Mathematical Cryptography

An Introduction to Mathematical Cryptography

Author: Jeffrey Hoffstein

Publisher: Springer

Published: 2014-09-11

Total Pages: 549

ISBN-13: 1493917110

DOWNLOAD EBOOK

This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, and digital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption. Numerous new exercises have been included.