Guidance on Nuclear Energy Cogeneration

Guidance on Nuclear Energy Cogeneration

Author: International Atomic Energy Agency

Publisher:

Published: 2019-10-31

Total Pages: 52

ISBN-13: 9789201041197

DOWNLOAD EBOOK

Cogeneration, i.e. the production of electricity and heat, has proven to be a highly efficient and environmentally attractive option for energy conversion. Nuclear cogeneration could be considered as an option in light of actions on climate change. However, nuclear cogeneration is not widely deployed. This publication provides a quick introduction to the advantages, experience, and future planning for implementation of nuclear cogeneration. It also highlights some demonstration projects that were developed in the past in connection with industries, describing technical concepts for combined nuclear-industrial complexes. The publication is intended to be of interest to users in academia and industry as well as government agencies and public institutions requiring basic information on various aspects of using nuclear power for cogeneration.


Opportunities for Cogeneration with Nuclear Energy

Opportunities for Cogeneration with Nuclear Energy

Author: International Atomic Energy Agency

Publisher:

Published: 2017

Total Pages: 0

ISBN-13: 9789201036162

DOWNLOAD EBOOK

This publication presents a comprehensive overview of various aspects relating to the application of cogeneration with nuclear energy, which may offer advantages such as increased efficiency, better cost effectiveness, and reduced environmental impact. The publication provides details on experiences, best practices and expectations for the foreseeable future of cogeneration with nuclear power technology and serves as a guide that supports newcomer countries. It includes information on systems and applications in various sectors, feasibility aspects, technical and economic details, and case studies.


High Temperature Gas-cooled Reactors

High Temperature Gas-cooled Reactors

Author: Tetsuaki Takeda

Publisher: Academic Press

Published: 2021-02-24

Total Pages: 500

ISBN-13: 012821032X

DOWNLOAD EBOOK

High-Temperature Gas Reactors is the fifth volume in the JSME Series on Thermal and Nuclear Power Generation. Series Editor Yasuo Koizumi and his Volume editors Tetsuaki Takeda and Yoshiyuki Inagaki present the latest research on High-Temperature Gas Reactor (HTGR) development and utilization, beginning with an analysis of the history of HTGRs. A detailed analysis of HTGR design features, including reactor core design, cooling tower design, pressure vessel design, I&C factors and safety design, provides readers with a solid understanding of how to develop efficient and safe HTGR within a nuclear power plant.The authors combine their knowledge to present a guide on the safety of HTGRs throughout the entire reactor system, drawing on their unique experience to pass on lessons learned and best practices to support professionals and researchers in their design and operation of these advanced reactor types. Case studies of critical testing carried out by the authors provide the reader with firsthand information on how to conduct tests safely and effectively and an understanding of which responses are required in unexpected incidents to achieve their research objectives. An analysis of technologies and systems in development and testing stages offer the reader a look to the future of HTGRs and help to direct and inform their further research in heat transfer, fluid-dynamics, fuel options and advanced reactor facility selection.This volume is of interest for nuclear and thermal energy engineers and researchers focusing on HTGRs, HTGR plant designers and operators, regulators, post graduate students of nuclear engineering, national labs, government officials and agencies in power and energy policy and regulations. - Written by the leaders and pioneers in nuclear research at the Japanese Society of Mechanical Engineers and draws upon their combined wealth of knowledge and experience - Includes real examples and case studies from Japan, the US and Europe to provide a deeper learning opportunity with practical benefits - Considers the societal impact and sustainability concerns and goals throughout the discussion - Includes safety factors and considerations, as well as unique results from performance testing of HTGR systems


Combined Heat and Power

Combined Heat and Power

Author: Paul Breeze

Publisher: Academic Press

Published: 2017-11-30

Total Pages: 103

ISBN-13: 0128129093

DOWNLOAD EBOOK

Combined Heat and Power Generation is a concise, up-to-date and accessible guide to the combined delivery of heat and power to anything, from a single home to a municipal power plant. Breeze discusses the historical background for CHP and why it is set to be a key emission control strategy for the 21st Century. Various technologies such as piston engines, gas turbines and fuel cells are discussed. Economic and environmental factors also are considered and analyzed, making this a very valuable resource for those involved with the research, design, implementation and management of the provision of heat and power. - Discusses the historical background of combined heat and power usage and why CHP is seen as a key emission control strategy for the 21st Century - Explores the technological aspects of CHP in a clear and concise style and delves into various key technologies, such as piston engines, steam and gas turbines and fuel cells - Evaluates the economic factors of CHP and the installation of generation systems, along with energy conversion efficiencies


Safety of Nuclear Power Plants

Safety of Nuclear Power Plants

Author: International Atomic Energy Agency

Publisher:

Published: 2012

Total Pages: 0

ISBN-13: 9789201215109

DOWNLOAD EBOOK

On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.


Vendor and User Requirements and Responsibilities in Nuclear Cogeneration Projects

Vendor and User Requirements and Responsibilities in Nuclear Cogeneration Projects

Author: IAEA

Publisher: International Atomic Energy Agency

Published: 2023-08-07

Total Pages: 146

ISBN-13: 9201368232

DOWNLOAD EBOOK

Nuclear cogeneration to produce electricity and process heat for nonelectric applications such as desalination, district heating or cooling or hydrogen production can play an important role in reducing dependence on fossil fuels. The implementation of nuclear cogeneration projects is inherently complex and such projects require a clear understanding of actions and responsibilities during the design, operation and management phases. This publication focuses on analysing the requirements and responsibilities of users and vendors and correspondence between them through the life cycle to of a nuclear cogeneration project, highlighting experience and lessons learned from retrofit and new build projects.


Advanced Power Generation Systems

Advanced Power Generation Systems

Author: Ibrahim Dincer

Publisher: Academic Press

Published: 2014-07-15

Total Pages: 657

ISBN-13: 0123838614

DOWNLOAD EBOOK

Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. - The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration - Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass - Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses - Case studies and examples demonstrate how novel systems and performance assessment methods function in practice


Nuclear Energy Basic Principles

Nuclear Energy Basic Principles

Author: International Atomic Energy Agency

Publisher:

Published: 2008

Total Pages: 0

ISBN-13: 9789201126085

DOWNLOAD EBOOK

Describes the rationale and vision for the peaceful use of nuclear energy. The publication identifies the basic principles that nuclear energy systems must satisfy to fulfil their promise of meeting growing global energy demands.


Management of Nuclear Power Plant Projects

Management of Nuclear Power Plant Projects

Author: IAEA

Publisher: International Atomic Energy Agency

Published: 2020-11-25

Total Pages: 221

ISBN-13: 9201055226

DOWNLOAD EBOOK

Member States intending to introduce a nuclear power programme will need to pass through several phases during the implementation. Experience shows that careful planning of the objectives, roles, responsibilities, interfaces and tasks to be carried out in different phases of a nuclear project is important for success. This publication presents a harmonized approach that may be used to structure the owner/operator management system and establish and manage nuclear projects and their development activities irrespective of the adopted approach. It has been developed from shared management practices and consolidated experiences provided by nuclear project management specialists through a series of workshops and working groups organized by the IAEA. The resultant publication presents a useful framework for the management of nuclear projects from initiation to closeout and captures international best practices.


Electric Grid Reliability and Interface with Nuclear Power Plants

Electric Grid Reliability and Interface with Nuclear Power Plants

Author: International Atomic Energy Agency

Publisher: IAEA Nuclear Energy

Published: 2012

Total Pages: 78

ISBN-13: 9789201261106

DOWNLOAD EBOOK

This publication describes the characteristics of the electrical grid system that are required for the connection and successful operation of a nuclear power plant, as well as the characteristics of a nuclear power plant that are significant for the design and operation of the electrical grid system. It addresses the issues to be considered when a nuclear power plant is being planned and describes the information exchange necessary between the developer of a nuclear power plant and the organization responsible for the electrical grid. The particular issue of a large nuclear unit connected with a small system is also discussed. A new topic introduced in this publication is the need for cyber security of the grid system near the nuclear power plant. Several case studies of Member States experience in developing new nuclear units and about grid events during operation are included.