In the recent past, significant strides have been made in the domain of plant growth regulators (PGRs) and biostimulants. In the sustainable utilization of plant germplasm PGRs and biostimulants play a pivotal role. With a magnified growth rate and less risk of inducing clonal somaclonal variations, PGRs (such as auxins, gibberellins, isoprenoid and aromatic cytokinins, ethylene, and abscisic acid) serve as a boon to plant biologists especially those working with rare endangered and threatened species and medicinal and aromatic plant species. Furthermore, the combined effect of PGRs with LEDs (light-emitting diode) on various aspects of plant development is an area of research gaining attention. The use of biostimulants to promote plant growth, yield and stress tolerance has increasingly gained attention. However, their functional role in the growth and development of plants is not clearly understood.
Biostimulants for crops from seed germination to plant development focuses on the effects and roles of natural biostimulants in every aspect of plant growth development to reduce the use of harmful chemical fertilizers and pesticides. Biostimulants are a group of substances of natural origin that offer a potential to reduce the dependency on harmful chemical fertilizers causing environmental degradation. While there is extensive literature on biostimulants, there remains a gap in understanding how natural biostimulants work and their practical application. This book fills that gap, presenting the ways in which biostimulants enhance seed vigor and plant productivity by looking into their mode of action, an area still being researched for deeper understanding. Exploring the roles of seed germination, pollen tube formation, pollen-pistil interaction, flower and fruit setting, to plant pigments, rhizospheric and soil microorganisms, the book also sheds light on the challenges and realistic opportunities for the use of natural biostimulants. - Approaches biostimulant research with the goal of transforming scientific research into practical application - Includes real-world examples from laboratory, greenhouse and field experiments - Presents the biochemical, physiological and molecular mode of action of biostimulants
Introduces readers to the chemical biology of plant biostimulants This book brings together different aspects of biostimulants, providing an overview of the variety of materials exploited as biostimulants, their biological activity, and agricultural applications. As different groups of biostimulants display different bioactivity and specificity, advances in biostimulant research is illustrated by different examples of biostimulants, such as humic substance, seaweed extracts, and substances with hormone-like activities. The book also reports on methods used to screen for new biostimulant compounds by exploring natural sources. Combining the expertise of internationally-renowned scientists and entrepreneurs in the area of biostimulants and biofertilisers, The Chemical Biology of Plant Biostimulants offers in-depth chapters that look at: agricultural functions and action mechanisms of plant biostimulants (PBs); plant biostimulants from seaweed; seaweed carbohydrates; and the possible role for electron shuttling capacity in elicitation of PB activity of humic substances on plant growth enhancement. The subject of auxins is covered next, followed closely by a chapter on plant biostimulants in vermicomposts. Other topics include: exploring natural resources for biostimulants; the impact of biostimulants on whole plant and cellular levels; the impact of PBs on molecular level; and the use of use of plant metabolites to mitigate stress effects in crops. Provides an insightful introduction to the subject of biostimulants Discusses biostimulant modes of actions Covers microbial biostimulatory activities and biostimulant application strategies Offers unique and varied perspectives on the subject by a team of international contributors Features summaries of publications on biostimulants and biostimulant activity The Chemical Biology of Plant Biostimulants will appeal to a wide range of readers, including scientists and agricultural practitioners looking for more knowledge about the development and application of biostimulants.
Natural-based substances, ‘plant biostimulants’, have been considered as environmentally friendly alternatives to agrichemicals. Biostimulants may comprise microbial inoculants, humic acids, fulvic acids, seaweed extracts, etc. These biostimulants have biopesticide and biostimulant utilities. Elucidations on direct or microbially mediated functions of biostimulants are presented in this book to illustrate fundamental principles and recent applications underlying this technology. This book has encompassed a cross-section of topics on different concepts to describe effective strategies by using these substances and/or beneficial microorganisms within sustainable agroecosystems. I sincerely hope that the information provided adequately reflects the objectives of this compilation. “One of the first conditions of happiness is that the link between man and nature shall not be broken.” Leo Tolstoy
Biostimulants stimulate natural processes in crops to enhance nutrient uptake, nutrient use efficiency (NUE), resistance to abiotic stress and quality traits. This collection reviews key advances in understanding and using biostimulants.
Sustainable Agriculture under Drought Stress: Integrated Soil, Water and Nutrient Management seamlessly blends cutting-edge research with practical applications, offering a unique perspective on tackling this urgent challenge. Through a multidisciplinary lens, this book provides a cohesive and comprehensive understanding of both the current landscape and future prospects. Readers will find this book equips them with the knowledge and strategies required to manage soil nutrients and water effectively, ensuring the health of both soil and plants, especially in arid and semi-arid regions, where solutions are urgently needed. This book offers actionable insights into mitigating the impacts of climate change on agricultural systems, making it essential reading for anyone invested in sustainable land management and food security. - Clarifies mechanisms and proposes solutions for enhancing soil health and fertility, irrigation management, and crop production in drought-stressed environments - Presents a diverse array of options for responding to drought stress, optimizing plant health and furthering sustainability - Explores emerging cropping systems and opportunities
Global climate change is bound to create a number of abiotic and biotic stresses in the environment, which would affect the overall growth and productivity of plants. Like other living beings, plants have the ability to protect themselves by evolving various mechanisms against stresses, despite being sessile in nature. They manage to withstand extremes of temperature, drought, flooding, salinity, heavy metals, atmospheric pollution, toxic chemicals and a variety of living organisms, especially viruses, bacteria, fungi, nematodes, insects and arachnids and weeds. Incidence of abiotic stresses may alter the plant-pest interactions by enhancing susceptibility of plants to pathogenic organisms. These interactions often change plant response to abiotic stresses. Plant growth regulators modulate plant responses to biotic and abiotic stresses, and regulate their growth and developmental cascades. A number of physiological and molecular processes that act together in a complex regulatory network, further manage these responses. Crosstalk between autophagy and hormones also occurs to develop tolerance in plants towards multiple abiotic stresses. Similarly, biostimulants, in combination with correct agronomic practices, have shown beneficial effects on plant metabolism due to the hormonal activity that stimulates different metabolic pathways. At the same time, they reduce the use of agrochemicals and impart tolerance to biotic and abiotic stress. Further, the use of bio- and nano-fertilizers seem to hold promise to improve the nutrient use efficiency and hence the plant yield under stressful environments. It has also been shown that the seed priming agents impart stress tolerance. Additionally, tolerance or resistance to stress may also be induced by using specific chemical compounds such as polyamines, proline, glycine betaine, hydrogen sulfide, silicon, β-aminobutyric acid, γ-aminobutyric acid and so on. This book discusses the advances in plant performance under stressful conditions. It should be very useful to graduate students, researchers, and scientists in the fields of botanical science, crop science, agriculture, horticulture, ecological and environmental science.