The first portion of the text is devoted to a review of those aspects of Lie groups necessary for the application of group theory to the physics of particles and fields. The second describes the way in which compact Lie groups are used to construct gauge theories.
During the course of this century, gauge invariance has slowly emerged from being an incidental symmetry of electromagnetism to being a fundamental geometrical principle underlying the four known fundamental physical interactions. The development has been in two stages. In the first stage (1916-1956) the geometrical significance of gauge-invariance gradually came to be appreciated and the original abelian gauge-invariance of electromagnetism was generalized to non-abelian gauge invariance. In the second stage (1960-1975) it was found that, contrary to first appearances, the non-abelian gauge-theories provided exactly the framework that was needed to describe the nuclear interactions (both weak and strong) and thus provided a universal framework for describing all known fundamental interactions. In this work, Lochlainn O'Raifeartaigh describes the former phase. O'Raifeartaigh first illustrates how gravitational theory and quantum mechanics played crucial roles in the reassessment of gauge theory as a geometric principle and as a framework for describing both electromagnetism and gravitation. He then describes how the abelian electromagnetic gauge-theory was generalized to its present non-abelian form. The development is illustrated by including a selection of relevant articles, many of them appearing here for the first time in English, notably by Weyl, Schrodinger, Klein, and London in the pre-war years, and by Pauli, Shaw, Yang-Mills, and Utiyama after the war. The articles illustrate that the reassessment of gauge-theory, due in a large measure to Weyl, constituted a major philosophical as well as technical advance.
The Standard Model is the foundation of modern particle and high energy physics. This book explains the mathematical background behind the Standard Model, translating ideas from physics into a mathematical language and vice versa. The first part of the book covers the mathematical theory of Lie groups and Lie algebras, fibre bundles, connections, curvature and spinors. The second part then gives a detailed exposition of how these concepts are applied in physics, concerning topics such as the Lagrangians of gauge and matter fields, spontaneous symmetry breaking, the Higgs boson and mass generation of gauge bosons and fermions. The book also contains a chapter on advanced and modern topics in particle physics, such as neutrino masses, CP violation and Grand Unification. This carefully written textbook is aimed at graduate students of mathematics and physics. It contains numerous examples and more than 150 exercises, making it suitable for self-study and use alongside lecture courses. Only a basic knowledge of differentiable manifolds and special relativity is required, summarized in the appendix.
This book introduces a large number of topics in lattice gauge theories, including analytical as well as numerical methods. It provides young physicists with the theoretical background and basic computational tools in order to be able to follow the extensive literature on the subject, and to carry out research on their own. Whenever possible, the basic ideas and technical inputs are demonstrated in simple examples, so as to avoid diverting the readers' attention from the main line of thought. Sufficient technical details are however given so that he can fill in the remaining details with the help of the cited literature without too much effort.This volume is designed for graduate students in theoretical elementary particle physics or statistical mechanics with a basic knowledge in Quantum Field Theory.
This volume is a tribute to Maxim Kontsevich, one of the most original and influential mathematicians of our time. Maxim’s vision has inspired major developments in many areas of mathematics, ranging all the way from probability theory to motives over finite fields, and has brought forth a paradigm shift at the interface of modern geometry and mathematical physics. Many of his papers have opened completely new directions of research and led to the solutions of many classical problems. This book collects papers by leading experts currently engaged in research on topics close to Maxim’s heart. Contributors: S. Donaldson A. Goncharov D. Kaledin M. Kapranov A. Kapustin L. Katzarkov A. Noll P. Pandit S. Pimenov J. Ren P. Seidel C. Simpson Y. Soibelman R. Thorngren
By the end of the 1970s, it was clear that all the known forces of nature (including, in a sense, gravity) were examples of gauge theories, characterized by invariance under symmetry transformations chosen independently at each position and each time. These ideas culminated with the finding of the W and Z gauge bosons (and perhaps also the Higgs boson). This important book brings together the key papers in the history of gauge theories, including the discoveries of: the role of gauge transformations in the quantum theory of electrically charged particles in the 1920s; nonabelian gauge groups in the 1950s; vacuum symmetry-breaking in the 1960s; asymptotic freedom in the 1970s. A short introduction explains the significance of the papers, and the connections between them. Contents: Gauge Invariance in Electromagnetism; Non-Abelian Gauge Theories; Gravity as a Gauge Theory; Gauge Invariance and Superconductivity; Spontaneous Symmetry Breaking and Particle Physics; Gauge-Fixing in Non-Abelian Gauge Theories; Gauge Identities and Unitarity; Asymptotic Freedom; Monopoles and Vortex Lines; Non-Pertubative Approaches; Instantons and Vacuum Structure; Three-Dimensional Gauge Fields and Topological Actions; Gauge Theories and Mathematics. Readership: Graduate students, researchers and lecturers in mathematical, theoretical, quantum and high energy physics, as well as historians of science.
Cambridge University Press is committed to keeping scholarly work in print for as long as possible. A short print-run of this academic paperback has been produced using digital technology. This technology has enabled Cambridge to keep the book in print for specialists and students when traditional methods of reprinting would not have been feasible. While the new digital cover differs from the original, the text content is identical to that of previous printings.
This book provides an introduction to topological quantum field theory as well as discrete gauge theory with quantum groups. In contrast to much of the existing literature, the present approach is at the same time intuitive and mathematically rigorous, making extensive use of suitable diagrammatic methods. It provides a highly unified description of lattice gauge theory, topological quantum field theory and models of quantum (super)gravity. The reader is thus in a unique position to understand the relations between these subjects as well as the underlying groundwork.
This is perhaps the most up-to-date book on Modern Elementary Particle Physics. The main content is an introduction to Yang-Mills fields, and the Standard Model of Particle Physics. A concise introduction to quarks is provided, with a discussion of the representations of SU(3).The Standard Model is presented in detail, including such topics as the Kobayashi-Maskawa matrix, chiral symmetry breaking, and the ?-vacuum. Theoretical topics of a more general nature include path integrals, topological solitons, renormalization group, effective potentials, the axial anomaly, and lattice gauge theory.This second edition, which has been expanded, incorporates the following new subjects: Wilson's renormalization scheme, and its relation to perturbative renormalization; pitfalls in quantizing gauge fields, such as the Gribov ambiguity; the lattice as a consistent regularization; Monte Carlo methods of solution; and the issues, folklores, and scenarios of quark confinement. More than a quarter of the book comprise of new materials.This book may be used as a text for a one-semester course on advanced quantum field theory, or reference book for particle physicists.
This volume is a compilation of works which, taken together, give a complete and consistent presentation of instanton calculus in non-Abelian gauge theories, as it exists now. Some of the papers reproduced are instanton classics. Among other things, they show from a historical perspective how the instanton solution has been found, the motivation behind it and how the physical meaning of instantons has been revealed. Other papers are devoted to different aspects of instanton formalism including instantons in supersymmetric gauge theories. A few unsolved problems associated with instantons are described in great detail. The papers are organized into several sections that are linked both logically and historically, accompanied by extensive comments.