Group Explicit Methods for the Numerical Solution of Partial Differential Equations

Group Explicit Methods for the Numerical Solution of Partial Differential Equations

Author: David J. Evans

Publisher: CRC Press

Published: 1997-05-22

Total Pages: 478

ISBN-13: 9789056990190

DOWNLOAD EBOOK

A new class of methods, termed "group explicit methods," is introduced in this text. Their applications to solve parabolic, hyperbolic and elliptic equations are outlined, and the advantages for their implementation on parallel computers clearly portrayed. Also included are the introductory and fundamental concepts from which the new methods are derived, and on which they are dependent. With the increasing advent of parallel computing into all aspects of computational mathematics, there is no doubt that the new methods will be widely used.


Numerical Methods for Partial Differential Equations

Numerical Methods for Partial Differential Equations

Author: Vitoriano Ruas

Publisher: John Wiley & Sons

Published: 2016-04-28

Total Pages: 376

ISBN-13: 1119111366

DOWNLOAD EBOOK

Numerical Methods for Partial Differential Equations: An Introduction Vitoriano Ruas, Sorbonne Universités, UPMC - Université Paris 6, France A comprehensive overview of techniques for the computational solution of PDE's Numerical Methods for Partial Differential Equations: An Introduction covers the three most popular methods for solving partial differential equations: the finite difference method, the finite element method and the finite volume method. The book combines clear descriptions of the three methods, their reliability, and practical implementation aspects. Justifications for why numerical methods for the main classes of PDE's work or not, or how well they work, are supplied and exemplified. Aimed primarily at students of Engineering, Mathematics, Computer Science, Physics and Chemistry among others this book offers a substantial insight into the principles numerical methods in this class of problems are based upon. The book can also be used as a reference for research work on numerical methods for PDE’s. Key features: A balanced emphasis is given to both practical considerations and a rigorous mathematical treatment The reliability analyses for the three methods are carried out in a unified framework and in a structured and visible manner, for the basic types of PDE's Special attention is given to low order methods, as practitioner's overwhelming default options for everyday use New techniques are employed to derive known results, thereby simplifying their proof Supplementary material is available from a companion website.


Time-Dependent Problems and Difference Methods

Time-Dependent Problems and Difference Methods

Author: Bertil Gustafsson

Publisher: John Wiley & Sons

Published: 2013-07-18

Total Pages: 464

ISBN-13: 1118548523

DOWNLOAD EBOOK

Praise for the First Edition ". . . fills a considerable gap in the numerical analysis literature by providing a self-contained treatment . . . this is an important work written in a clear style . . . warmly recommended to any graduate student or researcher in the field of the numerical solution of partial differential equations." —SIAM Review Time-Dependent Problems and Difference Methods, Second Edition continues to provide guidance for the analysis of difference methods for computing approximate solutions to partial differential equations for time-dependent problems. The book treats differential equations and difference methods with a parallel development, thus achieving a more useful analysis of numerical methods. The Second Edition presents hyperbolic equations in great detail as well as new coverage on second-order systems of wave equations including acoustic waves, elastic waves, and Einstein equations. Compared to first-order hyperbolic systems, initial-boundary value problems for such systems contain new properties that must be taken into account when analyzing stability. Featuring the latest material in partial differential equations with new theorems, examples, and illustrations,Time-Dependent Problems and Difference Methods, Second Edition also includes: High order methods on staggered grids Extended treatment of Summation By Parts operators and their application to second-order derivatives Simplified presentation of certain parts and proofs Time-Dependent Problems and Difference Methods, Second Edition is an ideal reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs and to predict and investigate physical phenomena. The book is also excellent for graduate-level courses in applied mathematics and scientific computations.


Numerical Solution of Differential Equations

Numerical Solution of Differential Equations

Author: Zhilin Li

Publisher: Cambridge University Press

Published: 2017-11-30

Total Pages: 305

ISBN-13: 1107163226

DOWNLOAD EBOOK

A practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.


Partial Differential Equations

Partial Differential Equations

Author: Walter A. Strauss

Publisher: John Wiley & Sons

Published: 2007-12-21

Total Pages: 467

ISBN-13: 0470054565

DOWNLOAD EBOOK

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.


Numerical Methods for Partial Differential Equations

Numerical Methods for Partial Differential Equations

Author: Sandip Mazumder

Publisher: Academic Press

Published: 2015-12-01

Total Pages: 484

ISBN-13: 0128035048

DOWNLOAD EBOOK

Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods focuses on two popular deterministic methods for solving partial differential equations (PDEs), namely finite difference and finite volume methods. The solution of PDEs can be very challenging, depending on the type of equation, the number of independent variables, the boundary, and initial conditions, and other factors. These two methods have been traditionally used to solve problems involving fluid flow. For practical reasons, the finite element method, used more often for solving problems in solid mechanics, and covered extensively in various other texts, has been excluded. The book is intended for beginning graduate students and early career professionals, although advanced undergraduate students may find it equally useful. The material is meant to serve as a prerequisite for students who might go on to take additional courses in computational mechanics, computational fluid dynamics, or computational electromagnetics. The notations, language, and technical jargon used in the book can be easily understood by scientists and engineers who may not have had graduate-level applied mathematics or computer science courses. - Presents one of the few available resources that comprehensively describes and demonstrates the finite volume method for unstructured mesh used frequently by practicing code developers in industry - Includes step-by-step algorithms and code snippets in each chapter that enables the reader to make the transition from equations on the page to working codes - Includes 51 worked out examples that comprehensively demonstrate important mathematical steps, algorithms, and coding practices required to numerically solve PDEs, as well as how to interpret the results from both physical and mathematic perspectives


Analytic Methods for Partial Differential Equations

Analytic Methods for Partial Differential Equations

Author: G. Evans

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 308

ISBN-13: 1447103793

DOWNLOAD EBOOK

This is the practical introduction to the analytical approach taken in Volume 2. Based upon courses in partial differential equations over the last two decades, the text covers the classic canonical equations, with the method of separation of variables introduced at an early stage. The characteristic method for first order equations acts as an introduction to the classification of second order quasi-linear problems by characteristics. Attention then moves to different co-ordinate systems, primarily those with cylindrical or spherical symmetry. Hence a discussion of special functions arises quite naturally, and in each case the major properties are derived. The next section deals with the use of integral transforms and extensive methods for inverting them, and concludes with links to the use of Fourier series.


Numerical Methods for Partial Differential Equations

Numerical Methods for Partial Differential Equations

Author: William F. Ames

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 380

ISBN-13: 1483262421

DOWNLOAD EBOOK

Numerical Methods for Partial Differential Equations, Second Edition deals with the use of numerical methods to solve partial differential equations. In addition to numerical fluid mechanics, hopscotch and other explicit-implicit methods are also considered, along with Monte Carlo techniques, lines, fast Fourier transform, and fractional steps methods. Comprised of six chapters, this volume begins with an introduction to numerical calculation, paying particular attention to the classification of equations and physical problems, asymptotics, discrete methods, and dimensionless forms. Subsequent chapters focus on parabolic and hyperbolic equations, elliptic equations, and special topics ranging from singularities and shocks to Navier-Stokes equations and Monte Carlo methods. The final chapter discuss the general concepts of weighted residuals, with emphasis on orthogonal collocation and the Bubnov-Galerkin method. The latter procedure is used to introduce finite elements. This book should be a valuable resource for students and practitioners in the fields of computer science and applied mathematics.


Proceedings of the International Conference on Microelectronics, Computing & Communication Systems

Proceedings of the International Conference on Microelectronics, Computing & Communication Systems

Author: Vijay Nath

Publisher: Springer

Published: 2017-12-29

Total Pages: 384

ISBN-13: 9811055653

DOWNLOAD EBOOK

This volume comprises select papers from the International Conference on Microelectronics, Computing & Communication Systems(MCCS 2015). Electrical, Electronics, Computer, Communication and Information Technology and their applications in business, academic, industry and other allied areas. The main aim of this volume is to bring together content from international scientists, researchers, engineers from both academia and the industry. The contents of this volume will prove useful to researchers, professionals, and students alike.


Finite Difference Computing with PDEs

Finite Difference Computing with PDEs

Author: Hans Petter Langtangen

Publisher: Springer

Published: 2017-06-21

Total Pages: 522

ISBN-13: 3319554565

DOWNLOAD EBOOK

This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.