Testing and Analysis of a Ground Source Heat Pump in Interior Alaska

Testing and Analysis of a Ground Source Heat Pump in Interior Alaska

Author: Robbin Garber-Slaght

Publisher:

Published: 2019

Total Pages: 152

ISBN-13:

DOWNLOAD EBOOK

Ground source heat pumps (GSHPs) can be an efficient heating and cooling system in much of the world. However, their ability to work in extreme cold climates is not well studied. In a heating-dominated cold climate, the heat extracted from the soil is not actively replaced in the summer because there is very little space cooling. A ground source heat pump was installed at the Cold Climate Housing Research Center (CCHRC) in Fairbanks, Alaska with the intent to collect data on its performance and effects on the soil for at least ten years. Analysis shows GSHPs are viable in the Fairbanks climate; however, their performance may degrade over time. According to two previous finite element models, the CCHRC heat pump seems to reach equilibrium in the soil at a COP of about 2.5 in five to seven years. Data from the first four heating seasons of the ground source heat pump at CCHRC is evaluated. The efficiency of the heat pump degraded from an average coefficient of performance (COP) of 3.7 to a mediocre 2.8 over the first four heating seasons. Nanofluids are potential heat transfer fluids that could be used to enhance the heat transfer in the ground heat exchanger. Improved heat transfer could lower installation costs by making the ground heat exchanger smaller. A theoretical analysis of adding nanoparticles to the fluid in the ground heat exchanger is conducted. Two nanofluids are evaluated to verify improved heat transfer and potential performance of the heat pump system. Data from the CCHRC heat pump system has also been used to analyze a 2-dimensional finite element model of the system's interaction with the soil. A model based on the first four years of data is developed using Temp/W software evaluates the ground heat exchanger for a thirty-year period. This model finds that the ground heat exchanger does not lower the ground temperature in the long term.


Analysis of Ground Source Heat Pumps in Sub-Arctic Conditions

Analysis of Ground Source Heat Pumps in Sub-Arctic Conditions

Author: Stephen Bishop

Publisher:

Published: 2014

Total Pages: 114

ISBN-13:

DOWNLOAD EBOOK

The Purpose of this project is to investigate the factors involved in the application of a ground source heat pump in subarctic conditions. This project originated with the construction of a ground source heat pump (GSHP) built at Cold Climate Housing Research Center's (CCHRC) Research Testing Facility. The GSHP built by CCHRC is an experiment to test the viability of a GSHP with different surface coverings. Specifically, this project will focus on different soil and atmospheric properties to gauge their effect on a GSHP in sub-arctic conditions. The project is primarily broken into 3 main sections which test in simulation: the effects of soil and atmospheric properties on heat flow into soil, the effects of these properties on a hypothetical GSHP and applying this to a simulation of CCHRC's GSHP. Additionally, some mitigation efforts were attem pted in simulation to improve the viability of the GSHP built by CCHRC.


Heating and Cooling with Ground-Source Heat Pumps in Moderate and Cold Climates, Two-Volume Set

Heating and Cooling with Ground-Source Heat Pumps in Moderate and Cold Climates, Two-Volume Set

Author: Vasile Minea

Publisher: CRC Press

Published: 2022-07-30

Total Pages: 841

ISBN-13: 1000564584

DOWNLOAD EBOOK

Heating and Cooling with Ground-Source Heat Pumps in Moderate and Cold Climates, Two-Volume Set focuses on the use of very low-temperature geothermal energy for heating and cooling residential, institutional, and industrial buildings, and aims to increase the design community’s awareness and knowledge of the benefits, design, and installation requirements of commercial/institutional building ground-source heat pumps (GSHP). This set helps readers assess applicability, select a GSHP system type, and estimate building thermal load to ensure proper size for ground-source subsystems, appropriate brine and groundwater flow rates, and apt design of building closed-loops with distributed or central geothermal heat pumps. The first volume addresses fundamentals and design principles of vertical and horizontal indirect and direct expansion closed-loop, as well as ground- and surface-water ground-source heat pump systems. It explains the thermodynamic aspects of mechanical and thermochemical compression cycles of geothermal heat pumps, as well as the energetic, economic, and environmental aspects associated with the use of ground-source heat pump systems for heating and cooling residential and commercial/institutional buildings in moderate and cold climates. The second volume focuses on applications and cases studies of ground-source heat pumps in moderate and cold climates. It details technical aspects, as well as the most common and uncommon application fields of basic system configurations. The principles of system integrations and applications in moderate and cold climates are also presented, each followed by case studies. This comprehensive work is aimed at designers of HVAC systems, as well as geological, mechanical, and chemical engineers implementing environmentally-friendly heating and cooling technologies for buildings.


Heating and Cooling with Ground-Source Heat Pumps in Cold and Moderate Climates

Heating and Cooling with Ground-Source Heat Pumps in Cold and Moderate Climates

Author: Vasile Minea

Publisher: CRC Press

Published: 2022-04-19

Total Pages: 443

ISBN-13: 1000564258

DOWNLOAD EBOOK

Heating and Cooling with Ground-Source Heat Pumps in Cold and Moderate Climates: Design Principles, Potential Applications and Case Studies focuses on applications and cases studies of ground-source heat pumps in moderate and cold climates. It details technical aspects (such as materials, thermal fluid carriers and pumping, and drilling/trenching technologies), as well as the most common and uncommon application fields for basic system configurations. The principles of system integrations and applications in moderate and cold climates (such as hybrid, solar-assisted, thermo-syphon, foundation, mines, snow melting, district heating and cooling ground-source heat pump systems, etc.) are also presented, each followed by case studies. Based on the author's more than 30 years of technical experience Discusses ground-source heat pump technologies that can be successfully applied in moderate and cold climates Presents several case studies, including successful energy results, as well as the main lessons learned This work is aimed at designers of HVAC systems, as well as geological, mechanical, and chemical engineers implementing environmentally-friendly heating and cooling technologies for buildings.