Grey Systems Analysis

Grey Systems Analysis

Author: Sifeng Liu

Publisher: Springer Nature

Published: 2022-12-08

Total Pages: 384

ISBN-13: 9811961603

DOWNLOAD EBOOK

The book covers up-to-date theoretical and applied advances in grey systems theory from across the world and vividly presents the reader with the overall picture of this new theory and its frontier research. Many of the concepts, models and methods in the book are original by the authors, including simplified form of grey number, general grey number and the operations of grey numbers; the axiomatic system of buffer operators and a series of weakening and strengthening operators; a series of grey relational analysis models, including grey absolute, relative, synthetic, similarity, closeness, negative and three dimension degree, etc.; grey fixed weight clustering model, grey evaluation models based on center-point and end-point mixed possibility functions; original difference grey model (ODGM), even difference grey model (EDGM), discrete grey model (DGM), fractional grey models, self-memory grey models; multi-attribute intelligent grey target decision models, weight vector group with kernel and the weighted comprehensive clustering coefficient vector, and spectrum analysis of sequence operators, etc. This book will be appropriate as a reference and/or professional book for courses of grey system theory for graduate students or high-level undergraduate students, majoring in areas of science, technology, agriculture, medicine, astronomy, earth science, economics, and management. It can also be utilized by researchers and practitioners in research institutions, business entities, and government agencies.


Grey Data Analysis

Grey Data Analysis

Author: Sifeng Liu

Publisher: Springer

Published: 2016-09-01

Total Pages: 351

ISBN-13: 9811018413

DOWNLOAD EBOOK

This book inclusively and systematically presents the fundamental methods, models and techniques of practical application of grey data analysis, bringing together the authors’ many years of theoretical exploration, real-life application, and teaching. It also reflects the majority of recent theoretical and applied advances in the theory achieved by scholars from across the world, providing readers a vivid overall picture of this new theory and its pioneering research activities. The book includes 12 chapters, covering the introduction to grey systems, a novel framework of grey system theory, grey numbers and their operations, sequence operators and grey data mining, grey incidence analysis models, grey clustering evaluation models, series of GM models, combined grey models, techniques for grey systems forecasting, grey models for decision-making, techniques for grey control, etc. It also includes a software package that allows practitioners to conveniently and practically employ the theory and methods presented in this book. All methods and models presented here were chosen for their practical applicability and have been widely employed in various research works. I still remember 1983, when I first participated in a course on Grey System Theory. The mimeographed teaching materials had a blue cover and were presented as a book. It was like finding a treasure: This fascinating book really inspired me as a young intellectual going through a period of confusion and lack of academic direction. It shone with pearls of wisdom and offered a beacon in the mist for a man trying to find his way in academic research. This book became the guiding light in my life journey, inspiring me to forge an indissoluble bond with Grey System Theory. ——Sifeng Liu


Grey Systems

Grey Systems

Author: Sifeng Liu

Publisher: Springer

Published: 2010-12-09

Total Pages: 391

ISBN-13: 3642161588

DOWNLOAD EBOOK

Due to inherent limitations in human sensing organs, most data collected for various purposes contain uncertainties. Even at the rare occasions when accurate data are available, the truthful predictions derived on the data tend to create chaotic consequences. So, to effectively process and make sense out of available data, we need methods to deal with uncertainty inherently existing inside the data. The intent of this monograph is to explore the fundamental theory, methods, and techniques of practical application of grey systems theory, initiated by Professor Deng Julong in 1982. This volume presents most of the recent advances of the theory accomplished by scholars from around the world. From studying this book, the reader will not only acquire an overall knowledge of this new theory but also be able to follow the most current research activities. All examples presented are based on practical applications of the theory when urgent real-life problems had to be addressed. Last but not the least, this book concludes with three appendices. The first one compares grey systems theory and interval analysis while revealing the fact that interval analysis is a part of grey mathematics. The second appendix presents an array of different approaches of studying uncertainties. And, the last appendix shows how uncertainties appear using general systems approach.


Data Analytics in Bioinformatics

Data Analytics in Bioinformatics

Author: Rabinarayan Satpathy

Publisher: John Wiley & Sons

Published: 2021-01-20

Total Pages: 433

ISBN-13: 111978560X

DOWNLOAD EBOOK

Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.


R for Health Data Science

R for Health Data Science

Author: Ewen Harrison

Publisher: CRC Press

Published: 2020-12-31

Total Pages: 354

ISBN-13: 1000226166

DOWNLOAD EBOOK

In this age of information, the manipulation, analysis, and interpretation of data have become a fundamental part of professional life; nowhere more so than in the delivery of healthcare. From the understanding of disease and the development of new treatments, to the diagnosis and management of individual patients, the use of data and technology is now an integral part of the business of healthcare. Those working in healthcare interact daily with data, often without realising it. The conversion of this avalanche of information to useful knowledge is essential for high-quality patient care. R for Health Data Science includes everything a healthcare professional needs to go from R novice to R guru. By the end of this book, you will be taking a sophisticated approach to health data science with beautiful visualisations, elegant tables, and nuanced analyses. Features Provides an introduction to the fundamentals of R for healthcare professionals Highlights the most popular statistical approaches to health data science Written to be as accessible as possible with minimal mathematics Emphasises the importance of truly understanding the underlying data through the use of plots Includes numerous examples that can be adapted for your own data Helps you create publishable documents and collaborate across teams With this book, you are in safe hands – Prof. Harrison is a clinician and Dr. Pius is a data scientist, bringing 25 years’ combined experience of using R at the coal face. This content has been taught to hundreds of individuals from a variety of backgrounds, from rank beginners to experts moving to R from other platforms.


Financial Risk Management and Modeling

Financial Risk Management and Modeling

Author: Constantin Zopounidis

Publisher: Springer Nature

Published: 2021-09-13

Total Pages: 480

ISBN-13: 3030666913

DOWNLOAD EBOOK

Risk is the main source of uncertainty for investors, debtholders, corporate managers and other stakeholders. For all these actors, it is vital to focus on identifying and managing risk before making decisions. The success of their businesses depends on the relevance of their decisions and consequently, on their ability to manage and deal with the different types of risk. Accordingly, the main objective of this book is to promote scientific research in the different areas of risk management, aiming at being transversal and dealing with different aspects of risk management related to corporate finance as well as market finance. Thus, this book should provide useful insights for academics as well as professionals to better understand and assess the different types of risk.


Practical Statistics for Data Scientists

Practical Statistics for Data Scientists

Author: Peter Bruce

Publisher: "O'Reilly Media, Inc."

Published: 2017-05-10

Total Pages: 322

ISBN-13: 1491952911

DOWNLOAD EBOOK

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data


Exploratory Data Analysis Using R

Exploratory Data Analysis Using R

Author: Ronald K. Pearson

Publisher: CRC Press

Published: 2018-05-04

Total Pages: 563

ISBN-13: 0429847041

DOWNLOAD EBOOK

Exploratory Data Analysis Using R provides a classroom-tested introduction to exploratory data analysis (EDA) and introduces the range of "interesting" – good, bad, and ugly – features that can be found in data, and why it is important to find them. It also introduces the mechanics of using R to explore and explain data. The book begins with a detailed overview of data, exploratory analysis, and R, as well as graphics in R. It then explores working with external data, linear regression models, and crafting data stories. The second part of the book focuses on developing R programs, including good programming practices and examples, working with text data, and general predictive models. The book ends with a chapter on "keeping it all together" that includes managing the R installation, managing files, documenting, and an introduction to reproducible computing. The book is designed for both advanced undergraduate, entry-level graduate students, and working professionals with little to no prior exposure to data analysis, modeling, statistics, or programming. it keeps the treatment relatively non-mathematical, even though data analysis is an inherently mathematical subject. Exercises are included at the end of most chapters, and an instructor's solution manual is available. About the Author: Ronald K. Pearson holds the position of Senior Data Scientist with GeoVera, a property insurance company in Fairfield, California, and he has previously held similar positions in a variety of application areas, including software development, drug safety data analysis, and the analysis of industrial process data. He holds a PhD in Electrical Engineering and Computer Science from the Massachusetts Institute of Technology and has published conference and journal papers on topics ranging from nonlinear dynamic model structure selection to the problems of disguised missing data in predictive modeling. Dr. Pearson has authored or co-authored books including Exploring Data in Engineering, the Sciences, and Medicine (Oxford University Press, 2011) and Nonlinear Digital Filtering with Python. He is also the developer of the DataCamp course on base R graphics and is an author of the datarobot and GoodmanKruskal R packages available from CRAN (the Comprehensive R Archive Network).


R for Data Science

R for Data Science

Author: Hadley Wickham

Publisher: "O'Reilly Media, Inc."

Published: 2016-12-12

Total Pages: 521

ISBN-13: 1491910364

DOWNLOAD EBOOK

Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results