This book presents key recent developments in biofuel policy, products, processes, patents and innovative technologies. It presents several case studies, which maximize reader insights into how innovative green energy technologies can be implemented on an industrial scale, with illustrations, photos and new approaches. It also analyzes in detail several different technological aspects of the research into and production of green fuels from the first, second and third generation, such as, bioethanol, biogas, biohydrogen, biobutanol, biofuels from pyrolysis, and discusses their economic and environmental impacts. A new source of information for engineers, technicians and students involved in production and research in the biofuels sector, this book also provides a valuable resource for industry, covering the current and future status of biofuels.
Sustainable Fuel Technologies Handbook provides a thorough thermodynamic analysis of new and current methods to give detailed insight into energy efficiency processes. This book includes the production methods, storage systems, and applications in various engines, as well as the safety related issues associated with all stages of production, storage, and utilization. With a comparison of cost implications and a techno-economic evaluation checking the feasibility of sustainable fuel use, this handbook is an invaluable reference source for researchers, professionals, and scientists working in the field of sustainability. The present power from solar, biomass, wind, hydrogen and other forms of renewable energy generated from sustainable sources can be harvested by various means and utilized in a variety of industries, supporting the need for clean fuels in modern society. However, there is still limited global availability and insufficient storage, which are required for efficient and effective harvesting of sustainable fuels. - Discusses new and innovative sustainable fuel technologies - Provides an integrated approach for modern tools, methodologies, and indicators in sustainable technologies - Evaluates advanced fuel technologies alongside other transformational options
Advanced Biofuel Technologies: Present Status, Challenges and Future Prospects deals with important issues such as feed stock availability, technology options, greenhouse gas reduction as seen by life cycle assessment studies, regulations and policies. This book provides readers complete information on the current state of developments in both thermochemical and biochemical processes for advanced biofuels production for the purpose of transportation, domestic and industrial applications. Chapters explore technological innovations in advanced biofuels produced from agricultural residues, algae, lipids and waste industrial gases to produce road transport fuels, biojet fuel and biogas. - Covers technologies and processes of different types of biofuel production - Outlines a selection of different types of renewable feedstocks for biofuel production - Summarizes adequate and balanced coverage of thermochemical and biochemical methods of biomass conversion into biofuel - Includes regulations, policies and lifecycle and techno-economic assessments
This book is intended to serve as a compendium on the state-of-the-art research in the field of biofuels. The book includes chapters on different aspects of biofuels from renowned international experts in the field. The book looks at current research on all aspects of biofuels from raw materials to production techniques. It also includes chapters on analysis of performance of biofuels, particularly biodiesel, in engines. The book incorporates case studies that provide insights into the performance of biofuels in applications such as automotive engines and diesel generators. The contents of the book will be useful to graduate students and researchers working on all aspects of biofuels. The book will also be of use to professionals and policymakers interested in biofuels.
Advanced Technology for the Conversion of Waste into Fuels and Chemicals: Volume 1: Biological Processes presents advanced and combined techniques that can be used to convert waste to energy, including combustion, gasification, paralysis, anaerobic digestion and fermentation. The book focuses on solid waste conversion to fuel and energy and presents the latest advances in the design, manufacture, and application of conversion technologies. Contributors from the fields of physics, chemistry, metallurgy, engineering and manufacturing present a truly trans-disciplinary picture of the field. Chapters cover important aspects surrounding the conversion of solid waste into fuel and chemicals, describing how valuable energy can be recouped from various waste materials. As huge volumes of solid waste are produced globally while huge amounts of energy are produced from fossil fuels, the technologies described in this comprehensive book provide the information necessary to pursue clean, sustainable power from waste material. - Presents the latest advances in waste to energy techniques for converting solid waste to valuable fuel and energy - Brings together contributors from physics, chemistry, metallurgy, engineering and the manufacturing industry - Includes advanced techniques such as combustion, gasification, paralysis, anaerobic digestion and fermentation - Goes far beyond municipal waste, including discussions on recouping valuable energy from a variety of industrial waste materials - Describes how waste to energy technologies present an enormous opportunity for clean, sustainable energy
While strides are being made in the research and development of environmentally acceptable and more sustainable alternative fuels—including efforts to reduce emissions of air pollutants associated with combustion processes from electric power generation and vehicular transportation—fossil fuel resources are limited and may soon be on the verge of depletion in the near future. Measuring the correlation between quality of life, energy consumption, and the efficient utilization of energy, the Handbook of Alternative Fuel Technologies, Second Edition thoroughly examines the science and technology of alternative fuels and their processing technologies. It focuses specifically on environmental, technoeconomic, and socioeconomic issues associated with the use of alternative energy sources, such as sustainability, applicable technologies, modes of utilization, and impacts on society. Written with research and development scientists and engineers in mind, the material in this handbook provides a detailed description and an assessment of available and feasible technologies, environmental health and safety issues, governmental regulations, and issues and agendas for R&D. It also includes alternative energy networks for production, distribution, and consumption. What’s New in This Edition: Contains several new chapters of emerging interest and updates various chapters throughout Includes coverage of coal gasification and liquefaction, hydrogen technology and safety, shale fuel by hydraulic fracturing, ethanol from lignocellulosics, biodiesel, algae fuels, and energy from waste products Covers statistics, current concerns, and future trends A single-volume complete reference, the Handbook of Alternative Fuel Technologies, Second Edition contains relevant information on chemistry, technology, and novel approaches, as well as scientific foundations for further enhancements and breakthroughs. In addition to its purposes as a handbook for practicing scientists and engineers, it can also be used as a textbook or as a reference book on fuel science and engineering, energy and environment, chemical process design, and energy and environmental policy.
Biofuels for Aviation: Feedstocks, Technology and Implementation presents the issues surrounding the research and use of biofuels for aviation, such as policy, markets, certification and performance requirements, life cycle assessment, and the economic and technical barriers to their full implementation. Readers involved in bioenergy and aviation sectors—research, planning, or policy making activities—will benefit from this thorough overview. The aviation industry's commitment to reducing GHG emissions along with increasing oil prices have sparked the need for renewable and affordable energy sources tailored to this sector's very specific needs. As jet engines cannot be readily electrified, turning to biofuels is the most viable option. However, aviation is a type of transportation for which traditional biofuels, such as bioethanol and biodiesel, do not fulfill key fuel requirements. Therefore, different solutions to this situation are being researched and tested around the globe, which makes navigating this scenario particularly challenging. This book guides readers through this intricate subject, bringing them up to speed with its current status and future prospects both from the academic and the industry point of view. Science and technology chapters delve into the technical aspects of the currently tested and the most promising technology in development, as well as their respective feedstocks and the use of additives as a way of adapting them to meet certain specifications. Conversion processes such as hydrotreatment, synthetic biology, pyrolysis, hydrothermal liquefaction and Fisher-Tropsch are explored and their results are assessed for current and future viability. - Presents the current status of biofuels for the aviation sector, including technologies that are currently in use and the most promising future technologies, their production processes and viability - Explains the requirements for certification and performance of aviation fuels and how that can be achieved by biofuels - Explores the economic and policy issues, as well as life cycle assessment, a comparative techno-economic analysis of promising technologies and a roadmap to the future - Explores conversion processes such as hydrotreatment, synthetic biology, pyrolysis, hydrothermal liquefaction and Fisher-Tropsch
The newest addition to the Green Chemistry and Chemical Engineering series from CRC Press, Biofuels and Bioenergy: Processes and Technologies provides a succinct but in-depth introduction to methods of development and use of biofuels and bioenergy. The book illustrates their great appeal as tools for solving the economic and environmental challenges associated with achieving energy sustainability and independence through the use of clean, renewable alternative energy. Taking a process engineering approach rooted in the fuel and petrochemical fields, this book masterfully integrates coverage of current conventional processes and emerging techniques. Topics covered include: Characterization and analysis of biofuels Process economics Chemistry of process conversion Process engineering and design and associated environmental technologies Energy balances and efficiencies Reactor designs and process configurations Energy materials and process equipment Integration with other conventional fossil fuel processes Byproduct utilization Governmental regulations and policies and global trends After an overview of the subject, the book discusses crop oils, biodiesel, and algae fuels. It examines ethanol from corn and from lignocelluloses and then explores fast pyrolysis and gasification of biomass. Discussing the future of biofuel production, it also describes the conversion of waste to biofuels, bioproducts, and bioenergy and concludes with a discussion of mixed feedstock. Written for readers with college-level backgrounds in chemistry, biology, physics, and engineering, this reference explores the science and technology involved in developing biofuels and bioenergy. It addresses the application of these and other disciplines, covering key issues of special interest to fuel process engineers, fuel scientists, and energy technologists, among others.
New Process Technology for Developing Low-Cost, Environmentally Safe Biofuels Rising fuel prices have created a surge in the worldwide demand for biofuels made from plant and animal feedstocks. Filled with a wealth of illustrations, Biofuels Engineering Process Technology fully explains the concepts, systems, and technology now being used to produce biofuels on both an industrial and small scale. Written by a team of leading biofuels experts, this lucid guide presents a complete introduction to biofuels and biorefining processes...state-of-the-art information on biofuels processed from fermentations of ethanol, hydrogen, microbial oils, and methane...new material on the production of biodiesel from plant and algal oils...and the use of microbial fuel cells to produce bioelectricity. Biofuels Engineering Process Technology takes readers step by step through: The key concepts, systems, and technology of biofuels A review of the basic concepts of fermentation pathways and kinetic modeling of bioreactors Biofuels produced from fermentations of agricultural feedstocks and biomass-ethanol, hydrogen, microbial oils, and methane Biodiesel fuels processed from the chemical conversion of microbial and plant oils Bioelectricity produced from microbial fuel cells The latest sustainable biorefinery concepts and methods Inside This Cutting-Edge Biofuels Engineering Guide • Introduction • Fuels from Fermentations: Ethanol • Hydrogen • Microbial Oils • Methane • Fuel from Chemical Conversion of Plant and Algal Oils: Biodiesel • Microbial Fuel Cells • Technical Resources
Handbook of Biofuels Production, Second Edition, discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage. Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The book provides a comprehensive and systematic reference on the range of biomass conversion processes and technology. Key changes for this second edition include increased coverage of emerging feedstocks, including microalgae, more emphasis on by-product valorization for biofuels' production, additional chapters on emerging biofuel production methods, and discussion of the emissions associated with biofuel use in engines. The editorial team is strengthened by the addition of two extra members, and a number of new contributors have been invited to work with authors from the first edition to revise existing chapters, thus offering fresh perspectives. - Provides systematic and detailed coverage of the processes and technologies being used for biofuel production - Discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage - Reviews the production of both first and second generation biofuels - Addresses integrated biofuel production in biorefineries and the use of waste materials as feedstocks