Edited by three of the world's leading pharmaceutical scientists, this is the first book on this important and hot topic, containing much previously unpublished information. As such, it covers all aspects of green chemistry in the pharmaceutical industry, from simple molecules to complex proteins, and from drug discovery to the fate of pharmaceuticals in the environment. Furthermore, this ready reference contains several convincing case studies from industry, such as Taxol, Pregabalin and Crestor, illustrating how this multidisciplinary approach has yielded efficient and environmentally-friendly processes. Finally, a section on technology and tools highlights the advantages of green chemistry.
Packed with real-world examples, this book illustrates the 12 principles of green chemistry. These diverse case studies demonstrate to scientists and students that beyond the theory, the challenges of green chemistry in pharmaceutical discovery and development remain an ongoing endeavor. By informing and welcoming additional practitioners to this m
Providing guidance for chemists and other scientists entering pharmaceutical discovery and development, this up-to-the-minute reference presents contributions from an international group of nearly 50 renowned researchers—offering a solid grounding in synthetic and physical organic chemistry, and clarifying the roles of various specialties in the development of new drugs. Featuring over 1000 references, tables, and illustrations, Process Chemistry in the Pharmaceutical Industry is sure to find its way to the bookshelves of organic, physical, analytical, process, and medicinal chemists and biochemists; pharmacists; and upper-level undergraduate and graduate students in these disciplines.
Showing how the pharmaceutical industry has adopted green chemistry, this book is of interest to industrialists working in pharmaceuticals and researchers working in green chemistry.
This detailed book highlights several emerging areas in the implementation of green chemistry in medicinal chemistry drug discovery with a specific focus on their application to the expeditious discovery of new biologically active entities. Divided into three sections, the collection explores greener approaches to chemical transformations that are both prevalent and have been highlighted as challenging within the pharmaceutical industry, overall synthetic strategy, as well as the implementation and impact of a range of enabling technologies within medicinal chemistry. As a volume of the Methods in Pharmacology and Toxicology series, chapters provide the kind of key insight that can guide researchers toward greater success in the lab. Authoritative and practical, Green Chemistry in Drug Discovery: From Academia to Industry provides both a fundamental insight into the progress that has been made as well as some of the challenges that still exist for these techniques to be effectively implemented in the drug discovery process in a routine manner.
Pharmaceutical manufacturing was one of the first industries to recognize the importance of green chemistry, with pioneering work including green chemistry metrics and alternative solvents and reagents. Today, other topical factors also have to be taken into consideration, such as rapidly depleting resources, high energy costs and new legislation. This book addresses current challenges in modern green chemical technologies and sustainability thinking. It encompasses a broad range of topics covered by the CHEM21 project – Europe’s largest public-private partnership project which aims to develop a toolbox of sustainable technologies for green chemical intermediate manufacture. Divided into two sections, the book first gives an overview of the key green chemistry tools, guidance and considerations aimed at developing greener processes, before moving on to look at cutting-edge synthetic methodologies. Featuring innovative research, this book is an invaluable reference for chemists across academia and industry wanting to further their knowledge and understanding of this important topic.
Contemporary Chemical Approaches for Green and Sustainable Drugs provides readers with the knowledge they need to integrate sustainable approaches into their work. Sections cover different aspects of green and sustainable drug development from design to disposal, including computer-aided drug design, green resourcing of drugs and drug candidates, an overview of the health concerns of pharmaceutical pollution, and a survey of potential chemical methods for its reduction. Drawing together the knowledge of a global team of experts, this book provides an inclusive overview of the chemical tools and approaches available for minimizing the negative environmental impact of current and newly developed drugs. This will be a useful guide for all academic and industrial researchers across green and sustainable chemistry, medicinal chemistry, environmental chemistry and pharmaceutical science. - Provides an integrative overview of the environmental risks of drugs and drug by products to support chemists in pre-emptively addressing these issues - Highlights the advantages of computer-aided drug design, green and sustainable sourcing, and novel methods for the production of safer, more effective drugs - Presents individual chapters written by renowned experts with diverse backgrounds - Reflects research in practice through selected case studies and extensive state-of-the-art reference sections to serve as a starting point in the design of any specialized environmentally-conscious medicinal chemistry project
As pharmaceutical companies strive to develop safer medicines at a lower cost, they must keep pace with the rapid growth of technology and research methodologies. Defying the misconception of process chemistry as mere scale-up work, Process Chemistry in the Pharmaceutical Industry, Vol. 2: Challenges in an Ever Changing Climate explor
The book explains the principles and fundamentals of Green Analytical Chemistry (GAC) and highlights the current developments and future potential of the analytical green chemistry-oriented applications of various solutions. The book consists of sixteen chapters, including the history and milestones of GAC; issues related to teaching of green analytical chemistry and greening the university laboratories; evaluation of impact of analytical activities on the environmental and human health, direct techniques of detection, identification and determination of trace constituents; new achievements in the field of extraction of trace analytes from samples characterized by complex composition of the matrix; “green” nature of the derivatization process in analytical chemistry; passive techniques of sampling of analytes; green sorption materials used in analytical procedures; new types of solvents in the field of analytical chemistry. In addition green chromatography and related techniques, fast tests for assessment of the wide spectrum of pollutants in the different types of the medium, remote monitoring of environmental pollutants, qualitative and comparative evaluation, quantitative assessment, and future trends and perspectives are discussed. This book appeals to a wide readership of the academic and industrial researchers. In addition, it can be used in the classroom for undergraduate and graduate Ph.D. students focusing on elaboration of new analytical procedures for organic and inorganic compounds determination in different kinds of samples characterized by complex matrices composition.Jacek Namieśnik was a Professor at the Department of Analytical Chemistry, Gdańsk University of Technology, Poland. Justyna Płotka-Wasylka is a teacher and researcher at the same department.
An updated overview of the rapidly developing field of green techniques for organic synthesis and medicinal chemistry Green chemistry remains a high priority in modern organic synthesis and pharmaceutical R&D, with important environmental and economic implications. This book presents comprehensive coverage of green chemistry techniques for organic and medicinal chemistry applications, summarizing the available new technologies, analyzing each technique’s features and green chemistry characteristics, and providing examples to demonstrate applications for green organic synthesis and medicinal chemistry. The extensively revised edition of Green Techniques for Organic Synthesis and Medicinal Chemistry includes 7 entirely new chapters on topics including green chemistry and innovation, green chemistry metrics, green chemistry and biological drugs, and the business case for green chemistry in the generic pharmaceutical industry. It is divided into 4 parts. The first part introduces readers to the concepts of green chemistry and green engineering, global environmental regulations, green analytical chemistry, green solvents, and green chemistry metrics. The other three sections cover green catalysis, green synthetic techniques, and green techniques and strategies in the pharmaceutical industry. Includes more than 30% new and updated material—plus seven brand new chapters Edited by highly regarded experts in the field (Berkeley Cue is one of the fathers of Green Chemistry in Pharma) with backgrounds in academia and industry Brings together a team of international authors from academia, industry, government agencies, and consultancies (including John Warner, one of the founders of the field of Green Chemistry) Green Techniques for Organic Synthesis and Medicinal Chemistry, Second Edition is an essential resource on green chemistry technologies for academic researchers, R&D professionals, and students working in organic chemistry and medicinal chemistry.