Greater Sage-grouse Seasonal Ecology and Responses to Habitat Manipulations in Northern Utah

Greater Sage-grouse Seasonal Ecology and Responses to Habitat Manipulations in Northern Utah

Author: Eric T. Thacker

Publisher:

Published: 2010

Total Pages: 138

ISBN-13:

DOWNLOAD EBOOK

Declining greater sage-grouse populations (Centrocercus urophasianus; hereafter sage-grouse) have led to increased concern regarding the long-term stability of the species. Previous research has identified factors contributing to the observed population declines. Habitat degradation and loss have been implicated as major factors in population declines. Although much is known about sage-grouse biology, more information is needed about population responses to specific management actions. This research was conducted to document sage-grouse responses to site-specific management actions. Additionally, I evaluated sage-grouse temporal and seasonal habitat-use and the comparability of techniques used by range and wildlife managers to measure vegetation responses of habitat management. Specifically, I evaluated 1) whether chemical analysis (gas chromatography) of sage-grouse fecal pellets could identify sagebrush species in sage-grouse winter diets, 2) the comparability of the line-point intercept and Daubenmire canopy cover methods for estimating canopy cover, 3) the response of sage-grouse broods to prescribed burns in a high elevation sagebrush community in northeastern Utah, and 4) the vegetation and insect characteristics of sites used by sage-grouse broods during a 24-hour period. I was able to determine wintering sage-grouse diets using gas chromatography by analyzing fecal pellets. This research also confirmed that black sagebrush (Artemisia nova) was an important component of sage-grouse winter diets in western Box Elder County and Parker Mountain populations. The line-point intercept and Daubenmire methods for estimating canopy cover are not comparable. Sage-grouse broods selected small (~25 ha) patchy prescribed burns in high elevation mountain big sagebrush (A. tridentata vaseyana) communities in northeastern Utah. Sage-grouse brood-site use in northwestern Utah did not differ during the diurnal hours, but nocturnal roost sites were characterized by shorter statured shrubs and more bare ground when compared to midday sites.


Greater Sage-Grouse

Greater Sage-Grouse

Author: Steve Knick

Publisher: Univ of California Press

Published: 2011-05-19

Total Pages: 665

ISBN-13: 0520948688

DOWNLOAD EBOOK

Admired for its elaborate breeding displays and treasured as a game bird, the Greater Sage-Grouse is a charismatic symbol of the broad open spaces in western North America. Unfortunately these birds have declined across much of their range—which stretches across 11 western states and reaches into Canada—mostly due to loss of critical sagebrush habitat. Today the Greater Sage-Grouse is at the center of a complex conservation challenge. This multifaceted volume, an important foundation for developing conservation strategies and actions, provides a comprehensive synthesis of scientific information on the biology and ecology of the Greater Sage-Grouse. Bringing together the experience of thirty-eight researchers, it describes the bird’s population trends, its sagebrush habitat, and potential limitations to conservation, including the effects of rangeland fire, climate change, invasive plants, disease, and land uses such as energy development, grazing, and agriculture.


Ecology and Seasonal Habitat Use Patterns of Columbian Sharp-tailed Grouse in Northern Utah

Ecology and Seasonal Habitat Use Patterns of Columbian Sharp-tailed Grouse in Northern Utah

Author: Ron D. Greer

Publisher:

Published: 2010

Total Pages: 75

ISBN-13:

DOWNLOAD EBOOK

Columbian sharp-tailed grouse (Tympanuchus phasianellus columbianus: hereafter sharp-tailed grouse) populations have been declining. These declines have been attributed to a number of factors, including habitat loss due to agriculture, habitat fragmentation, overgrazing by livestock, and the loss to fire. To gather information about their status in northern Utah, I radio-marked sharp-tailed grouse in 2003 (n=15) and 2004 (n=20) in two research areas. The study areas were located on the south end of Cache County and in eastern Box Elder County. In the Cache study area, I monitored 7 males and 1 female in 2003, and 6 males and 3 females in 2004. In the Box Elder study area, I monitored 6 males in 2003 and 6 males and 5 females in 2004. I then located the radio-marked sharp-tailed grouse using telemetry and collected Visual Obstruction Readings (VOR) and vegetation data on each flush site and on a randomly selected paired point. I completed an unsupervised classification of the two study areas to determine if habitats were used more than would be expected based on availability. I then used a paired point linear regression to determine if vegetation parameters were correlated with sharp-tailed grouse on the landscape. Sagebrush in the Box Elder County study area and forbs in the Cache County study area were significantly correlated with habitat use by sharp-tailed grouse. The VOR readings were higher at the flush sites than at the paired points. The unsupervised classification showed that in Box Elder County, sagebrush was used in greater proportion than is available, while in the Cache County study area there were no habitat types that were used in greater proportion than was available on the landscape. I collected information on nest sites, nest success, broods, and mortality of these 2 populations. Nest success was 75% combined over the 2-year study, and mortality was 72% for both populations over the 2 years. Seasonal habitat use and distance traveled were determined using Global Positioning System points collected at every flush point. The distance traveled ranged from 0.9 km to 14.7 km, with the longest distance being traveled in the winter.


Greater Sage-grouse Seasonal Habitat Models, Response to Juniper Reduction and Effects of Capture Behavior on Vital Rates, in Northwest Utah

Greater Sage-grouse Seasonal Habitat Models, Response to Juniper Reduction and Effects of Capture Behavior on Vital Rates, in Northwest Utah

Author: Avery Cook

Publisher:

Published: 2015

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The greater sage-grouse (Centrocercus urophasianus; sage-grouse) is a species of conservation concern in Utah and range-wide due to declines in populations and threats to sagebrush habitat on which they depend. To effectively conserve the species, detailed site-specific knowledge of ecology and distribution is needed. To expand knowledge of local populations within the West Box Elder Sage Grouse Management Area (SGMA) and gain insights into the effectiveness of vegetation treatments intended to benefit sagegrouse, I radio marked and tracked 123 (68 female, 55 male) sage-grouse and conducted sage-grouse pellet surveys on 19 conifer removal projects. Widespread habitat restoration measures designed to benefit sage-grouse have highlighted the need for prioritization tools to optimize placement of sage-grouse habitat projects. I generated seasonal habitat models to predict sage-grouse habitat use within the West Box Elder SGMA using a suite of vegetation and topographical predictors and known sage-grouse locations. Model fit was good with brood, early summer, late summer, lekking (early spring), and non-breeding models reporting an AUC of >0.90; nest and winter models reported an AUC of 0.87 and 0.85, respectively. A vegetation disturbance history was built for the study area from 1985 to 2013; however, the vegetation disturbances mapped were not a strong predictor of sage-grouse seasonal habitat-use. To evaluate effectiveness of conifer reduction treatments I used fecal pellet and in concert with radio-telemetry data. Increased sage-grouse use of conifer treatments was positively associated with sage-grouse presence in adjacent habitats (P = 0.018), percent shrub cover (P = 0.039), and mesic environments within 1000 m of treatments (P = 0.048). Sage-grouse use of conifer treatments was negatively associated with conifer canopy cover (P = 0.048) within 1000 m of treatments. To investigate sample bias related to individual bird behavior or capture trauma I monitored 204 radio-marked sage-grouse within the West Box Elder and Rich-Morgan- Summit SGMAs in Utah between January 2012 and March 2013. Sage-grouse that flushed one or more times prior to capture had higher brood (P = 0.014) and annual survival (P = 0.027) than those that did not. Sage-grouse that experienced more capture trauma had decreased annual survival probabilities (P = 0.04).


Greater Sage-Grouse Vital Rate and Habitat Use Response to Landscape Scale Habitat Manipulations and Vegetation Micro-Sites in Northwestern Utah

Greater Sage-Grouse Vital Rate and Habitat Use Response to Landscape Scale Habitat Manipulations and Vegetation Micro-Sites in Northwestern Utah

Author: Charles P. Sandford

Publisher:

Published: 2016

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The greater sage-grouse (Centrocercus urophasianus; sage-grouse) has been a species of conservation concern since the early 20th century due to range-wide population declines. To contribute to knowledge of the ecology of sage-grouse populations that inhabit the Box Elder Sage Grouse Management Area (SGMA) in northwestern Utah and quantify their responses to landscape scale habitat manipulations, I monitored vital rates and habitat selection of 45 female sage-grouse from 2014 to 2015. Using telemetry locations of female sage-grouse with known nest and brood fates, I created Generalized Linear Mixed Models to estimate the influence of proximity to pinyon (Pinus spp.) and juniper (Juniperus spp.; conifer) encroachment, and removal projects may have on sagegrouse reproductive fitness in the Box Elder SGMA. The best fit model suggested that for every 1 km a nest was located away from a conifer removal area, probability of nest success was reduced by 9.1% (Îø = -0.096, P


Ecology of Isolated Greater Sage-grouse Populations Inhabiting the Wildcat Knolls and Horn Mountain, South Central Utah

Ecology of Isolated Greater Sage-grouse Populations Inhabiting the Wildcat Knolls and Horn Mountain, South Central Utah

Author: Christopher James Perkins

Publisher:

Published: 2010

Total Pages: 123

ISBN-13:

DOWNLOAD EBOOK

Greater sage-grouse (Centrocercus urophasianus) currently inhabit about 56% of pre-settlement distribution of potential habitat. In 2005, the Castle Country Adaptive Resources Management Local Working Group (CaCoARM) was formed to address concerns regarding local sage-grouse populations in Carbon and Emery counties. In 2006-2007, CaCoARM identified the Wildcat Knolls and Horn Mountain as areas of special concern for greater sage-grouse conservation. Both sites selected by the group were inhabited by what appeared to be small isolated sage-grouse populations. Factors limiting small isolated greater sage-grouse populations throughout its range are diverse and largely site-specific. During 2008-2009, I captured, radio-collared, and monitored 43 sage-grouse between the two populations to document their ecology and seasonal habitat use patterns. The sites are only 24 km apart, but the populations appear to be isolated from each other. Sage-grouse on Horn Mountain and Wildcat Knolls are one-stage migratory and non-migratory, respectively. Although nesting and brooding success varied between sites, my results were comparable to those published in studies throughout the species' range. Overall male survival was lower on the Wildcat Knolls than Horn Mountain (P = 0.003). Hens that selected brood sites exhibiting increased shrub cover and grass height were more successful than hens that selected sites with lower shrub cover and lower grass height. Potential nesting habitat on the Wildcat Knolls and Horn Mountain were estimated at 2,329 and 5,493 ha, respectively. Hens that selected nest sites farther from non-habitat edge were more successful than hens that selected nest sites that were closer to non-habitat edge on the Wildcat Knolls. Higher nest success observed on the Wildcat Knolls was attributed to less habitat fragmentation. Isolated populations of greater sage-grouse are more susceptible to lower amounts of genetic diversity that may lead to inbreeding depression and increased rates of disease and parasites. I collected mitochondrial DNA samples from both the Wildcat Knolls and Horn Mountain populations. Although the haplotype frequencies recorded in the Wildcat Knolls and Horn Mountain populations were low, one was shared with several Utah populations. The documented low genetic diversity (especially on Horn Mountain) confirmed the isolation suspected by the local working group. Microsatellite tests may provide insights to enhance understanding of genetic differences among sites, and assist managers in determining whether or not translocations are necessary to maintain population genetic diversity. Biologists should not only continue to take samples for genetic comparison, but also record morphometric and behavior data.


The Role of Vegetation Structure, Composition, and Nutrition in Greater Sage-Grouse Ecology in Northwestern Utah

The Role of Vegetation Structure, Composition, and Nutrition in Greater Sage-Grouse Ecology in Northwestern Utah

Author: Brian R. Wing

Publisher:

Published: 2014

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The greater sage-grouse (Centrocercus urophasianus; sage-grouse) is the largest grouse species in North America and an indicator species for the condition of sagebrush (Artemisia spp.) ecosystems. The Box Elder Sage-Grouse Management Area (SGMA) in northwestern Utah encompasses one of the state0́9s largest sage-grouse populations. To fill knowledge gaps regarding the population inhabiting the Raft River subunit of the Box Elder SGMA, I captured, radio-marked, and monitored 123 (68 female, 55 male) sage-grouse from January 2012 through December 2013. My purpose was to describe how the seasonal movements, survival, and reproductive rates of this sage-grouse population are effected by small-scale habitat use and breeding season foraging patterns. Sage-grouse in the Raft River subunit have distinct winter and summer ranges, and some travelled long distances annually. Survival rates were similar to other Utah populations and range-wide averages. Nest and brood success rates were above range-wide averages and those reported in the adjacent Grouse Creek subunit of the same SGMA. Sage-grouse in the study area selected habitats with specific vegetation characteristics to fit their seasonal needs. Sage-grouse use sites differed from random sites with greater forb height, grass height, and shrub height and cover. Nest success rates were directly related to selected vegetation, as successful nests were located more often under sagebrush and within greater forb height and cover and grass and shrub height than unsuccessful nests. Brood sites were also greater in forb, grass, and shrub height than other use sites. In March and April of 2013, I located radio-marked sage-grouse at flock browse sites to observe their sagebrush diet selection patterns. Lab analyses showed no differences in nutritional quality or chemical composition between browsed sagebrush plants and non-browsed and random plants. However, browsed black sagebrush (A. nova) was lower in protein and higher in chemical content than browsed Wyoming big sagebrush (A. tridentata wyomingensis). Radio-marked females were frequently observed at sites where black sagebrush was browsed, and one individual chemical was considerably more concentrated in browsed plants associated with females that nested successfully. My research provides useful information regarding the seasonal habitat use patterns and vegetation preferences of sage-grouse in the Box Elder SGMA. To conserve the sage-grouse population in northwestern Utah, management actions must protect the seasonal habitats and vegetation that the species depends on for its productivity and survival.


Greater Sage-grouse Response to Sagebrush Manipulations in Rich County, Utah

Greater Sage-grouse Response to Sagebrush Manipulations in Rich County, Utah

Author: Roger Blair Stringham

Publisher:

Published: 2010

Total Pages: 108

ISBN-13:

DOWNLOAD EBOOK

Management of greater sage-grouse (Centrocercus urophasianus) in the west has changed over the last several decades in response to environmental and anthropogenic causes. Many land and wildlife management agencies have begun manipulating sagebrush with herbicides, machinery, and fire. The intent of these manipulations (treatments) is to reduce sagebrush canopy cover and increase the density of grass and forb species, thus providing higher quality sage-grouse brood-rearing habitat. However, monitoring of sage-grouse response to such manipulations has often been lacking or non-existent. The objective of our study was to determine the response of sage-grouse to sagebrush reduction treatments that have occurred recently in Rich County, Utah. Our study areas were treated with a pasture aerator with the intent of creating sage-grouse brood-rearing habitat. We used pellet transects, occupancy sampling, and GPS radio telemetry to quantify sage-grouse habitat use in treated and untreated areas. Pellet transect, occupancy, and GPS radio telemetry methods all showed a strong pattern of sage-grouse use of treated sites during the breeding and early brood-rearing periods. Sage-grouse use of treated sites was greatest in lower elevation habitat (1950 to 2110 m), and use was highest during the breeding and early brood-rearing periods. We found very little use of higher elevation (2120 to 2250 m) treated or untreated sites. Our results suggest that sagebrush reduction treatments can have positive impacts on sage-grouse use at lower elevations and can be successful in creating brood-rearing habitat. Elevation differences and period of sage-grouse use were significant factors in our study in determining how beneficial sagebrush reduction treatments were for sage-grouse.


Winter Habitat Selection and Nesting Ecology of Greater Sage Grouse in Strawberry Valley, Utah

Winter Habitat Selection and Nesting Ecology of Greater Sage Grouse in Strawberry Valley, Utah

Author: Riley D. Peck

Publisher:

Published: 2011

Total Pages: 49

ISBN-13:

DOWNLOAD EBOOK

This study examined winter habitat use and nesting ecology of greater sage grouse (Centrocerus urophasianus) in Strawberry Valley (SV), Utah located in the north-central part of the state. We monitored sage grouse with the aid of radio telemetry throughout the year, but specifically used information from the winter and nesting periods for this study. Our study provided evidence that sage grouse show fidelity to nesting areas in subsequent years regardless of nest success. We found only 57% of our nests located within the 3 km distance from an active lek typically used to delineate critical nesting habitat. We suggest a more conservative distance of 10 km for our study area. Whenever possible, we urge consideration of nest-area fidelity in conservation planning across the range of greater sage grouse. We also evaluated winter-habitat selection at multiple spatial scales. Sage grouse in our study area selected gradual slopes with high amounts of sagebrush exposed above the snow. We produced a map that identified suitable winter habitat for sage grouse in our study area. This map highlighted core areas that should be conserved and will provide a basis for management decisions affecting Strawberry Valley, Utah.