50 essays by eminent scholars include meditations on "Structures," Disciplines," "Space," "Function," "Group," "Probability," and "The Mathematical Epic" (Volume I) and on "Mathematics and the Human Intellect," "Mathematics and Technology," and "Mathematics and Civilization" (Volume II). 1962 edition.
The year's finest writing on mathematics from around the world This anthology brings together the year's finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2011 makes available to a wide audience many articles not easily found anywhere else—and you don't need to be a mathematician to enjoy them. These writings offer surprising insights into the nature, meaning, and practice of mathematics today. They delve into the history, philosophy, teaching, and everyday occurrences of math, and take readers behind the scenes of today's hottest mathematical debates. Here Ian Hacking discusses the salient features that distinguish mathematics from other disciplines of the mind; Doris Schattschneider identifies some of the mathematical inspirations of M. C. Escher's art; Jordan Ellenberg describes compressed sensing, a mathematical field that is reshaping the way people use large sets of data; Erica Klarreich reports on the use of algorithms in the job market for doctors; and much, much more. In addition to presenting the year's most memorable writings on mathematics, this must-have anthology includes a foreword by esteemed physicist and mathematician Freeman Dyson. This book belongs on the shelf of anyone interested in where math has taken us—and where it is headed.
The year's finest mathematics writing from around the world This annual anthology brings together the year's finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2016 makes available to a wide audience many articles not easily found anywhere else—and you don't need to be a mathematician to enjoy them. These writings offer surprising insights into the nature, meaning, and practice of mathematics today. They delve into the history, philosophy, teaching, and everyday occurrences of math, and take readers behind the scenes of today's hottest mathematical debates. Here Burkard Polster shows how to invent your own variants of the Spot It! card game, Steven Strogatz presents young Albert Einstein's proof of the Pythagorean Theorem, Joseph Dauben and Marjorie Senechal find a treasure trove of math in New York's Metropolitan Museum of Art, and Andrew Gelman explains why much scientific research based on statistical testing is spurious. In other essays, Brian Greene discusses the evolving assumptions of the physicists who developed the mathematical underpinnings of string theory, Jorge Almeida examines the misperceptions of people who attempt to predict lottery results, and Ian Stewart offers advice to authors who aspire to write successful math books for general readers. And there's much, much more. In addition to presenting the year's most memorable writings on mathematics, this must-have anthology includes a bibliography of other notable writings and an introduction by the editor, Mircea Pitici. This book belongs on the shelf of anyone interested in where math has taken us—and where it is headed.
This book contains a selection of the papers presented at the Logic, Reasoning and Rationality 2010 conference (LRR10) in Ghent. The conference aimed at stimulating the use of formal frameworks to explicate concrete cases of human reasoning, and conversely, to challenge scholars in formal studies by presenting them with interesting new cases of actual reasoning. According to the members of the Wiener Kreis, there was a strong connection between logic, reasoning, and rationality and that human reasoning is rational in so far as it is based on (classical) logic. Later, this belief came under attack and logic was deemed inadequate to explicate actual cases of human reasoning. Today, there is a growing interest in reconnecting logic, reasoning and rationality. A central motor for this change was the development of non-classical logics and non-classical formal frameworks. The book contains contributions in various non-classical formal frameworks, case studies that enhance our apprehension of concrete reasoning patterns, and studies of the philosophical implications for our understanding of the notions of rationality.
This book presents a collection of old and new essays exploring the author’s unique contributions to the sociology of science, mathematics, logic, robotics, brain, and god. Known for his defense of a strong social constructionist approach to the hard problems in the sociology of science, the power and range of Restivo’s interests and studies are discussed in this unique text. The essays range from his introduction of the sociology of objectivity early in his career to his recent construction of a social brain paradigm. The author situates himself in the context of the leading paradigms in science studies and his relationships with leading figures in the field including Latour, Woolgar, Needham, and D.T. Campbell. The book demonstrates a general theoretical focus on the rejection of transcendence. He rejects Platonism in mathematics and socially situates consciousness, genius, and God. The author’s wide ranging interdisciplinary competencies reflect classical and postmodern influences and will be an invaluable reference for researchers working in this field.
Presenting mathematics as forming a natural bridge between the humanities and the sciences, this book makes calculus accessible to those in the liberal arts. Much of the necessary geometry and algebra are exposed through historical development, and a section on the development of calculus offers insights into the place of mathematics in the history of thought.
The renowned naturalist, Loren Eisely, observed that we humans have given up the “certainty of the animal that what it senses is exactly there in the shape the eye beholds.” The big question is, what did we get in return? This book provides a convincing answer to this question, arguing that, instead of recording reality, your brain uses your experience to create a story, a narrative, about how what happened to you in the past led to what is happening to you now. This narrative is your private reality. The book continues by showing how replacing recorded reality with private narrative enabled humans to anticipate the fundamentally unknowable immediate and remote future and expose potential threats. It then shows how private narrative enabled complex thought and communication with others. Drawing upon a wide range of research, the book provides a stimulating new way of viewing human experience, thinking, communicating, and action.
A compact survey, at the elementary level, of some of the most important concepts of mathematics. Attention is paid to their technical features, historical development and broader philosophical significance. Each of the various branches of mathematics is discussed separately, but their interdependence is emphasised throughout. Certain topics - such as Greek mathematics, abstract algebra, set theory, geometry and the philosophy of mathematics - are discussed in detail. Appendices outline from scratch the proofs of two of the most celebrated limitative results of mathematics: the insolubility of the problem of doubling the cube and trisecting an arbitrary angle, and the Gödel incompleteness theorems. Additional appendices contain brief accounts of smooth infinitesimal analysis - a new approach to the use of infinitesimals in the calculus - and of the philosophical thought of the great 20th century mathematician Hermann Weyl. Readership: Students and teachers of mathematics, science and philosophy. The greater part of the book can be read and enjoyed by anyone possessing a good high school mathematics background.
This collection of essays explores the ancient affinity between the mathematical and the aesthetic, focusing on fundamental connections between these two modes of reasoning and communicating. From historical, philosophical and psychological perspectives, with particular attention to certain mathematical areas such as geometry and analysis, the authors examine ways in which the aesthetic is ever-present in mathematical thinking and contributes to the growth and value of mathematical knowledge.
The updated new edition of the classic and comprehensive guide to the history of mathematics For more than forty years, A History of Mathematics has been the reference of choice for those looking to learn about the fascinating history of humankind’s relationship with numbers, shapes, and patterns. This revised edition features up-to-date coverage of topics such as Fermat’s Last Theorem and the Poincaré Conjecture, in addition to recent advances in areas such as finite group theory and computer-aided proofs. Distills thousands of years of mathematics into a single, approachable volume Covers mathematical discoveries, concepts, and thinkers, from Ancient Egypt to the present Includes up-to-date references and an extensive chronological table of mathematical and general historical developments. Whether you're interested in the age of Plato and Aristotle or Poincaré and Hilbert, whether you want to know more about the Pythagorean theorem or the golden mean, A History of Mathematics is an essential reference that will help you explore the incredible history of mathematics and the men and women who created it.