Graphs & Digraphs, Fourth Edition

Graphs & Digraphs, Fourth Edition

Author: Gary Chartrand

Publisher: CRC Press

Published: 2004-10-28

Total Pages: 398

ISBN-13: 9781584883906

DOWNLOAD EBOOK

With a growing range of applications in fields from computer science to chemistry and communications networks, graph theory has enjoyed a rapid increase of interest and widespread recognition as an important area of mathematics. Through more than 20 years of publication, Graphs & Digraphs has remained a popular point of entry to the field, and through its various editions, has evolved with the field from a purely mathematical treatment to one that also addresses the mathematical needs of computer scientists. Carefully updated, streamlined, and enhanced with new features, Graphs & Digraphs, Fourth Edition reflects many of the developments in graph theory that have emerged in recent years. The authors have added discussions on topics of increasing interest, deleted outdated material, and judiciously augmented the Exercises sections to cover a range of problems that reach beyond the construction of proofs. New in the Fourth Edition: Expanded treatment of Ramsey theory Major revisions to the material on domination and distance New material on list colorings that includes interesting recent results A solutions manual covering many of the exercises available to instructors with qualifying course adoptions A comprehensive bibliography including an updated list of graph theory books Every edition of Graphs & Digraphs has been unique in its reflection the subject as one that is important, intriguing, and most of all beautiful. The fourth edition continues that tradition, offering a comprehensive, tightly integrated, and up-to-date introduction that imparts an appreciation as well as a solid understanding of the material.


Graphs & Digraphs

Graphs & Digraphs

Author: Gary Chartrand

Publisher: CRC Press

Published: 2010-10-19

Total Pages: 600

ISBN-13: 143989518X

DOWNLOAD EBOOK

Continuing to provide a carefully written, thorough introduction, Graphs & Digraphs, Fifth Edition expertly describes the concepts, theorems, history, and applications of graph theory. Nearly 50 percent longer than its bestselling predecessor, this edition reorganizes the material and presents many new topics. New to the Fifth Edition New or expanded coverage of graph minors, perfect graphs, chromatic polynomials, nowhere-zero flows, flows in networks, degree sequences, toughness, list colorings, and list edge colorings New examples, figures, and applications to illustrate concepts and theorems Expanded historical discussions of well-known mathematicians and problems More than 300 new exercises, along with hints and solutions to odd-numbered exercises at the back of the book Reorganization of sections into subsections to make the material easier to read Bolded definitions of terms, making them easier to locate Despite a field that has evolved over the years, this student-friendly, classroom-tested text remains the consummate introduction to graph theory. It explores the subject’s fascinating history and presents a host of interesting problems and diverse applications.


Graphs & Digraphs, Fourth Edition

Graphs & Digraphs, Fourth Edition

Author: Gary Chartrand

Publisher: Chapman and Hall/CRC

Published: 1996-08-01

Total Pages: 432

ISBN-13: 9780412987212

DOWNLOAD EBOOK

This is the third edition of the popular text on graph theory. As in previous editions, the text presents graph theory as a mathematical discipline and emphasizes clear exposition and well-written proofs. New in this edition are expanded treatments of graph decomposition and external graph theory, a study of graph vulnerability and domination, and introductions to voltage graphs, graph labelings, and the probabilistic method in graph theory.


Graph Theory and Its Applications, Second Edition

Graph Theory and Its Applications, Second Edition

Author: Jonathan L. Gross

Publisher: CRC Press

Published: 2005-09-22

Total Pages: 799

ISBN-13: 158488505X

DOWNLOAD EBOOK

Already an international bestseller, with the release of this greatly enhanced second edition, Graph Theory and Its Applications is now an even better choice as a textbook for a variety of courses -- a textbook that will continue to serve your students as a reference for years to come. The superior explanations, broad coverage, and abundance of illustrations and exercises that positioned this as the premier graph theory text remain, but are now augmented by a broad range of improvements. Nearly 200 pages have been added for this edition, including nine new sections and hundreds of new exercises, mostly non-routine. What else is new? New chapters on measurement and analytic graph theory Supplementary exercises in each chapter - ideal for reinforcing, reviewing, and testing. Solutions and hints, often illustrated with figures, to selected exercises - nearly 50 pages worth Reorganization and extensive revisions in more than half of the existing chapters for smoother flow of the exposition Foreshadowing - the first three chapters now preview a number of concepts, mostly via the exercises, to pique the interest of reader Gross and Yellen take a comprehensive approach to graph theory that integrates careful exposition of classical developments with emerging methods, models, and practical needs. Their unparalleled treatment provides a text ideal for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology.


Graphs & Digraphs, Fifth Edition

Graphs & Digraphs, Fifth Edition

Author: Gary Chartrand

Publisher: CRC Press

Published: 2010-10-19

Total Pages: 600

ISBN-13: 1439826277

DOWNLOAD EBOOK

Continuing to provide a carefully written, thorough introduction, Graphs & Digraphs, Fifth Edition expertly describes the concepts, theorems, history, and applications of graph theory. Nearly 50 percent longer than its bestselling predecessor, this edition reorganizes the material and presents many new topics. New to the Fifth Edition New or expanded coverage of graph minors, perfect graphs, chromatic polynomials, nowhere-zero flows, flows in networks, degree sequences, toughness, list colorings, and list edge colorings New examples, figures, and applications to illustrate concepts and theorems Expanded historical discussions of well-known mathematicians and problems More than 300 new exercises, along with hints and solutions to odd-numbered exercises at the back of the book Reorganization of sections into subsections to make the material easier to read Bolded definitions of terms, making them easier to locate Despite a field that has evolved over the years, this student-friendly, classroom-tested text remains the consummate introduction to graph theory. It explores the subject’s fascinating history and presents a host of interesting problems and diverse applications.


Topics in Graph Theory

Topics in Graph Theory

Author: Jonathan L Gross

Publisher: CRC Press

Published: 2023-05-24

Total Pages: 904

ISBN-13: 1000884082

DOWNLOAD EBOOK

The interplay continues to grow between graph theory and a wide variety of models and applications in mathematics, computer science, operations research, and the natural and social sciences. Topics in Graph Theory is geared toward the more mathematically mature student. The first three chapters provide the basic definitions and theorems of graph theory and the remaining chapters introduce a variety of topics and directions for research. These topics draw on numerous areas of theoretical and applied mathematics, including combinatorics, probability, linear algebra, group theory, topology, operations research, and computer science. This makes the book appropriate for a first course at the graduate level or as a second course at the undergraduate level. The authors build upon material previously published in Graph Theory and Its Applications, Third Edition, by the same authors. That text covers material for both an undergraduate and graduate course, while this book builds on and expands the graduate-level material. Features Extensive exercises and applications. Flexibility: appropriate for either a first course at the graduate level or an advanced course at the undergraduate level. Opens avenues to a variety of research areas in graph theory. Emphasis on topological and algebraic graph theory.


Graphs, Networks and Algorithms

Graphs, Networks and Algorithms

Author: Dieter Jungnickel

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 597

ISBN-13: 3662038226

DOWNLOAD EBOOK

Revised throughout Includes new chapters on the network simplex algorithm and a section on the five color theorem Recent developments are discussed


The Probabilistic Method

The Probabilistic Method

Author: Noga Alon

Publisher: John Wiley & Sons

Published: 2015-11-02

Total Pages: 396

ISBN-13: 1119062071

DOWNLOAD EBOOK

Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.


Graph Theory and Its Applications

Graph Theory and Its Applications

Author: Jonathan L. Gross

Publisher: CRC Press

Published: 2018-11-05

Total Pages: 577

ISBN-13: 0429757093

DOWNLOAD EBOOK

Graph Theory and Its Applications, Third Edition is the latest edition of the international, bestselling textbook for undergraduate courses in graph theory, yet it is expansive enough to be used for graduate courses as well. The textbook takes a comprehensive, accessible approach to graph theory, integrating careful exposition of classical developments with emerging methods, models, and practical needs. The authors’ unparalleled treatment is an ideal text for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology. Features of the Third Edition Expanded coverage on several topics (e.g., applications of graph coloring and tree-decompositions) Provides better coverage of algorithms and algebraic and topological graph theory than any other text Incorporates several levels of carefully designed exercises that promote student retention and develop and sharpen problem-solving skills Includes supplementary exercises to develop problem-solving skills, solutions and hints, and a detailed appendix, which reviews the textbook’s topics About the Authors Jonathan L. Gross is a professor of computer science at Columbia University. His research interests include topology and graph theory. Jay Yellen is a professor of mathematics at Rollins College. His current areas of research include graph theory, combinatorics, and algorithms. Mark Anderson is also a mathematics professor at Rollins College. His research interest in graph theory centers on the topological or algebraic side.


Graphs and Matrices

Graphs and Matrices

Author: Ravindra B. Bapat

Publisher: Springer

Published: 2014-09-19

Total Pages: 197

ISBN-13: 1447165691

DOWNLOAD EBOOK

This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reorganized. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory, it will also benefit readers in the sciences and engineering.