This book gives a comprehensive overview of graphene oxides (GO) from atomic structures and fundamental properties to technological applications. Atomic structural models, electronic properties, mechanical properties, optical properties, and functionalizing and compositing of GO are illustrated. Moreover, the excellent physical and chemical properties offer GO promising applications in electronic nanodevices, chemical sensors and catalyst, energy storage, and biotechnology, which are also presented in this book. Therefore, this book is of interest to researchers in physics, chemistry, materials science, and nanoscience.
Graphene oxide is a carbon-based material what produces a monolayer or a few layers of oxygen-functionalized graphene. The number of layers usually differentiate between graphene oxide and graphite oxide. Though a multilayer system, graphite oxide monolayer flakes and few-layer flakes can be found in a graphene oxide dispersion. Due to the presence of oxygen functionalities, graphene oxide can easily disperse in various organic solvents including water and is compatible with a different matrix that dramatically enhances electrical and mechanical properties when mixed with polymer and ceramic materials. Graphene oxide possesses a sp2 bonding network. Graphene oxide can be used as an intermediary in the production of single layer or few-layer graphene sheets. Graphene oxide can be reduced in solution and as a thin film using a variety of reducing conditions, and reduction converts the graphene oxide into a material that has a large enhancement in electrical conductivity. Graphene oxide has been used in a variety of applications not limited to materials science engineering and biotechnology. The present book describes the advances in research and applications of graphene oxide; in Chapter One, the general introduction on graphene oxide is introduced whereas in Chapter Two a broader summary of laser processing for graphene oxide/transition metal oxide nanocomposite coatings are described. Chapter Three discusses a graphene oxide template for the scaffolding transition metal/metal oxide ingredient. Chapter Four concludes the new advances in graphene oxide-metal nanocomposites for cancer theranostics. Chapter Five summarizes graphene oxide membranes as supercapacitor separators and Chapter Six contains details of graphene oxide in terms of the advances in research and applications of membranes. Chapter Seven speaks on the conductivity of graphene oxide films while Chapter Eight describes the application of graphene oxide based nanocomposites in heterogeneous photocatalysis for water purification. Chapter Nine deals with an immense uprising, detailing the functionalization and fine-tuning of 2D graphene designed for heterogeneous catalysis to make things greener. Chapter Ten summarizes graphene oxides for biomedical and therapeutic applications. Chapter Eleven describes graphene oxide as an outstanding material for advanced batteries while Chapter Twelve speaks on behalf of self-assembled graphene oxides and their different applications. Chapter Thirteen describes the versatile applications of graphene oxide in the field of nanoelectronic while Chapter Fourteen concludes this book with details about the design, fabrication, testing and delivery of graphene oxide in solar energy storage. This book will be highly beneficial to the researchers working in the area of graphene oxide, polymer/ceramic chemistry, materials science, engineering, drug delivery, medicine and environmental science. It also covers membrane and super capacitors with their advanced applications. This book also provides a platform for all researchers to carry out graphene oxide research and the advances in the area. The book also covers recent fundamentals, advancements and newer prospects about the future research in graphene oxides.
Graphite oxide is one of the promising carbon based materials in the field of modern science and technology. Graphite oxide is the oxidised form of graphite which can be produced from graphite powder or flakes by using strong oxidising agent adoption solution chemistry approach. A number of oxygen containing functionalities such as carboxylic, phenolic, carbonyl and epoxide are present in graphite oxide structure. Due to the presence of the oxygen containing functionalities graphite oxide is hydrophilic in nature. This book discusses the many mechanical properties of graphene oxide, its application and how it is synthesised.
Due to its unique properties, graphene oxide has become one of the most studied materials of the last decade and a great variety of applications have been reported in areas such as sensors, catalysis and biomedical applications. This comprehensive volume systematically describes the fundamental aspects and applications of graphene oxide. The book is designed as an introduction to the topic, so each chapter begins with a discussion on fundamental concepts, then proceeds to review and summarize recent advances in the field. Divided into two parts, the first part covers fundamental aspects of graphene oxide and includes chapters on formation and chemical structure, characterization methods, reduction methods, rheology and optical properties of graphene oxide solutions. Part Two covers numerous graphene oxide applications including field effect transistors, transparent conductive films, sensors, energy harvesting and storage, membranes, composite materials, catalysis and biomedical applications. In each case the differences and advantages of graphene oxide over its non-oxidised counterpart are discussed. The book concludes with a chapter on the challenges of industrial-scale graphene oxide production. Graphene Oxide: Fundamentals and Applications is a valuable reference for academic researchers, and industry scientists interested in graphene oxide, graphene and other carbon materials.
Carbon nanomaterials have a unique place in Nanoscience owing to their exceptional electrical, thermal, chemical and mechanical properties and have found application in areas as diverse as composite materials, energy storage and conversion, sensors, drug delivery, field emission devices and nano-scale electronic components. Conjugated carbon nanomaterial covers the areas of carbon nanotubes, fullerenes and graphene. Graphene is the newest of the carbon nanomaterials and promises to be a very active field. Already since its isolation in 2004 it has grabbed the attention of the chemistry, materials and physics communities. It promises to rival carbon nanotubes in terms of properties and potential applications with the number of publications rising from ca. 130 in 2005 to ca. 2,800 in 2010. In this short book Sekhar Ray gives an overview on graphene and graphene-oxide with a strong focus on applications. Structured in three chapters, one on graphene, one on graphene-oxide and one on graphene based nanoparticles his resource describes in each chapter the preparation (including synthesis and functionalization) and material properties before detailing a whole range of applications. Ray finishes each chapter with information on remaining challenges and perspectives.
2D Functional Nanomaterials Outlines the latest developments in 2D heterojunction nanomaterials with energy conversion applications In 2D Functional Nanomaterials: Synthesis, Characterization, and Applications, Dr. Ganesh S. Kamble presents an authoritative overview of the most recent progress in the rational design and synthesis of 2D nanomaterials and their applications in semiconducting catalysts, biosensors, electrolysis, batteries, and solar cells. This interdisciplinary volume is a valuable resource for materials scientists, electrical engineers, nanoscientists, and solid-state physicists looking for up-to-date information on 2D heterojunction nanomaterials. The text summarizes the scientific contributions of international experts in the fabrication and application of 2D nanomaterials while discussing the importance and impact of 2D nanomaterials on future economic growth, novel manufacturing processes, and innovative products. Provides thorough coverage of graphene chemical derivatives synthesis and applications, including state-of-the-art developments and perspectives Describes 2D/2D graphene oxide-layered double hydroxide nanocomposites for immobilization of different radionuclides Covers 2D nanomaterials for biomedical applications and novel 2D nanomaterials for next-generation photodetectors Discusses applications of 2D nanomaterials for cancer therapy and recent trends ingraphene-latex nanocomposites Perfect for materials scientists, inorganic chemists, and electronics engineers, 2D Functional Nanomaterials: Synthesis, Characterization, and Applications is also an essential resource for solid-state physicists seeking accurate information on recent progress in two-dimensional heterojunction materials with energy conversion applications.
This book aims to introduce the emerging technologies of graphene oxide (GO) in various fields such as industrial, medical, electronics, artificial intelligence, materials-alloys, energy storage devices, optical, physics, mechanical, nanomaterials, and sustainable chemistry. At the current level of development, the properties and binding structure of graphene are important toward the recent applications. The knowledge produced by the graphene oxide could be a much haunting basis for discovering innovative opportunities in the field of emerging trends of research. Future technology expected that the full development will depend only on graphene and its functionalized composite materials. This book highlights the challenges and opportunities associated with GOs. Subject of interest in this book is exploring the opportunities and technologies related to abundant clean energy, pure water, and noble long healthy life.
Graphene is a super thin and strong material with potential to revolutionize the field of technology. As such, graphene is quickly attracting attention from researchers seeking to identify new concepts and applications of this “supermaterial.” Graphene Production and Application is a comprehensive and easy-to-understand source of information on the advances in the growing research on graphene. Written by experts in the field, this book covers the topics of synthetic approaches, characterization techniques, and applications of graphene. It is ideally suited for a broad range of readers including students, instructors, and professionals.
Graphene and its derivatives are potential nanomaterials currently being widely investigated for diverse applications due to its exceptional mechanical, electrical, physical, and chemical properties. Examples of the applications include drug delivery, shape memory polymers, gene delivery, biosensor, tissue engineering, flexible electronic devices, antibacterial composites, photovoltaic devices, and physical sensors. Its excellent properties can be used to develop smart nanomaterials with enhanced properties for various advanced applications. There is no doubt that graphene-based nanomaterials are helping to develop next generation technologies with enhancing properties to change people's lifestyles. This book provides an overview of recent research and development of synthesis of graphene and its applications.
Providing fundamental knowledge necessary to understand graphene's atomic structure, band-structure, unique properties and an overview of groundbreaking current and emergent applications, this new handbook is essential reading for materials scientists, chemists and physicists.Since the 2010 physics Nobel Prize awarded to Geim and Novosolev for their groundbreaking work isolating graphene from bulk graphite, there has been a huge surge in interest in the area. This has led to a large number of news books on graphene. However, for such a vast inflow of new entrants, the current literature is surprisingly slight, focusing exclusively on current research or books on previous "hot topic" allotropes of carbon.This book covers fundamental groundwork of the structure, property, characterization methods and applications of graphene, along with providing the necessary knowledge of graphene's atomic structure, how it relates to its band-structure and how this in turn leads to the amazing properties of graphene. And so it provides new graduate students and post-docs with a resource that equips them with the knowledge to undertake their research. - Discusses graphene's fundamental structure and properties, acting as a time-saving handbook for validated research - Demonstrates 100+ high-quality graphical representations, providing the reader with clear images to convey complex situations - Reviews characterization techniques relevant to grapheme, equipping the reader with experimental knowledge relevant for practical use rather than just theoretical understanding