This book discusses the remediation process using graphene oxide as removal agent from a chemical point of view. State of the art, properties of graphene oxide and its preparation methods are reported in the introduction. Environmental issues and regulations are presented in view of applying graphene oxide dispersion to the purification of aqueous medium, especially for industrial wastewater. The remediation process, for removal organic molecules, inorganic/metallic ions, covers the last part of the book. Future prospective for graphene oxide in the environmental remediation approach is commented.
Carbon-Based Material for Environmental Protection and Remediation presents an overview of carbon-based technologies and processes, and examines their usefulness and efficiency for environmental preservation and remediation. Chapters cover topics ranging from pollutants removal to new processes in materials science. Written for interested readers with strong scientific and technological backgrounds, this book will appeal to scientific advisors at private companies, academics, and graduate students.
The book is a comprehensive deep-dive into the developments and advancements of emerging carbon-based nanocomposites for wastewater applications. Science and technology development are tackling one of the world's most pressing concerns—water contamination and effective treatment. Carbon-based nanocomposites have emerged as one of the leading materials in this treatment push because of their properties and high ability for the catalytic degradation of contaminants from aqueous segments. The 10 chapters in this timely book cover the follows areas: Carbon-based nanocomposites for remediation of heavy metals and organic pollutants from wastewater Functional green carbon nanocomposites for heavy-metal treatment in water Green nanocomposites and applications in environmentally-friendly carbon nanomaterials Carbon-based nanocomposites as heterogeneous catalysts for organic reactions in environment-friendly solvents Carbon-based polymer nanocomposite applications Biochar-based adsorbents for the removal of organic pollutants from aqueous systems Carbon nanomaterial-based green nanocomposites The removal of trihalomethanes from water using nanofiltration membranes Nanocomposite materials as electrode materials in microbial fuel cells for the removal of water pollutants Plasmonic smart nanosensors for the determination of environmental pollutants.
This book presents a unique collection of up-to-date applications of graphene for water science. Because water is an invaluable resource and the intelligent use and maintenance of water supplies is one of the most important and crucial challenges that stand before mankind, new technologies are constantly being sought to lower the cost and footprint of processes that make use of water resources as potable water as well as water for agriculture and industry, which are always in desperate demand. Much research is focused on graphene for different water treatment uses. Graphene, whose discovery won the 2010 Nobel Prize in physics, has been a shining star in the material science in the past few years. Owing to its interesting electrical, optical, mechanical and chemical properties, graphene has found potential applications in a wide range of areas, including water purification technology. A new type of graphene-based filter could be the key to managing the global water crisis. According to the World Economic Forum's Global Risks Report, lack of access to safe, clean water is the biggest risk to society over the coming decade. Yet some of these risks could be mitigated by the development of this filter, which is so strong and stable that it can be used for extended periods in the harshest corrosive environments, and with less maintenance than other filters on the market. The graphene-based filter could be used to filter chemicals, viruses, or bacteria from a range of liquids. It could be used to purify water, dairy products or wine, or in the production of pharmaceuticals. This book provides practical information to all those who are involved in this field.
Analytical Applications of Graphene Oxide, Volume 106 in the Comprehensive Analytical Chemistry series, presents timely topics in this area of study. Chapters in this new release include 2. Surface Modifications of Graphene Oxide Nanomaterials for Analytical Applications, Analytical techniques for the characterization of graphene oxide, Perspectives of graphene oxide in separation science, Features of graphene oxide-based membranes in water purification, Graphene oxide nanocomposites for the removal of inorganic species, Graphene oxide nanocomposites as promising adsorbents for removal of organic pollutants, Graphene oxide-based metal nanocomposites for colorimetric sensing applications, Graphene oxide-based fluorescence analytical methods for bioassays, and much more.Additional sections delve into Graphene oxide in molecular biology approaches for nucleic acid detection, Analytical applications of graphene oxide-based hydrogels, Magnetic graphene oxide in analytical science, Applications of Magnetic graphene oxide in water decontamination, Graphene oxide nanocomposites in electroanalytical tools for assaying of organic and biomolecules, Graphene oxide in electroanalytical tools for the detection of inorganic species, and much more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Comprehensive Analytical Chemistry series - Updated release includes the latest information on Analytical Applications of Graphene Oxide
The world is filled with electronics devices that use batteries and supercapacitors, such as laptops, cellphones, and cameras, creating the need for the efficient and effective production of good energy storage devices. The depletion of fossil fuels demands alternative sources of energy, which prompted the creation of solar cell (PV) technologies and fuel cells. The introduction of graphene oxides to these technologies help improve the performance of various energy storage and conversion devices. This book provides a broad review of graphene oxide synthesis and applications in various energy storage devices. The chapters explore various fundamental principles and the foundations of different energy conversion and storage devices with respect to their advancement due to emergence of graphene oxide, such as supercapacitors, batteries and fuel cells. This book will enable research towards improving the performance of various energy storage devices using graphene oxides and will be a valuable reference for researchers and scientists working across physics, engineering, and chemistry on different types of graphene oxide-based energy storage and conversion devices. Features Edited by established authorities in the field, with chapter contributions from subject area specialists. Provides a comprehensive review of the field. Up to date with the latest developments and cutting-edge research.
Advances in Aerogel Composites for Environmental Remediation presents both contextual information about aerogels and details about their application in environmental remediation. A wide variety of aerogels are discussed, ranging from common to advanced and from natural to synthetic. By exploring ongoing research and developments in the environmental remediation technologies using aerogel and its composites, this book addresses common day-to-day environmental problems and presents solutions to the use of aerogel materials. The chapters discuss fabrication of various aerogel composites, along with their design and applications toward different environmental remediation technologies. Additionally, the properties and advantages of aerogels are compared and contrasted to those of traditional materials. Given the consistent increase in environmental pollution, there is an urgent need to explore new materials for advances in remediation technology. Advances in Aerogel Composites for Environmental Remediation brings researchers and practitioners in the fields of environmental remediation, environmental science, and engineering to the forefront of remediation technologies with a thorough breakdown of the benefits of and techniques relevant to aerogel composites. Covers basic properties, unique properties, and fabrication techniques of aerogels, from basic silica aerogels to present-day conventional aerogels Discusses most of the major environmental remediation techniques and the advantages of using aerogels for these remediation techniques in comparison to using traditional methods Presents future prospects for utilizing aerogels in modern day-to-day life and in the fabrication of tangible new products
Analytical Applications of Graphene for Comprehensive Analytical Chemistry, Volume 91 in the Comprehensive Analytical Chemistry series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of interesting topics, including Graphene based Nanocomposites: Synthesis, Properties and Application as Electrochemical Sensors, Graphene based Sample Preparation Techniques, Graphene Based Sample Preparation Techniques, Graphene-based thin film nanocomposite membranes for separation and purification, Analytical Applications of Graphene Oxide for Membrane Processes as Separation and Concentration Methods, Physico-chemically Functionalized Hybrid Graphene Derivatives for Miniaturized Microfluidics and Biotransducer Platform, and much more. Other chapters cover Graphene-based chemiresistive gas sensors, Graphene based Sensors, Applications of graphene-based sensors for biomedical industries, Point of care applications with graphene in human life, Ethical, Legal, Social & Economics Issues of Graphene, Safety and toxicity concerns of graphene and its composites, and the Future of Analytical Chemistry with Graphene. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Comprehensive Analytical Chemistry series - Contains the latest information on the analytical applications of graphene for analytical chemistry
This book informs readers about recent advances in graphene carbocatalysis encapsulating the current developments in the syntheses, properties, characterizations, functionalization and catalytic applications of graphene, its derivatives and composites. It serves as a comprehensive primary reference book for chemistry and engineering students who are required to learn about graphene chemistry in detail. It also serves as an introductory reference for industry professionals and researchers who are interested in graphene research as well as its emerging applications in catalysis and beyond Volume 1 provides an introduction to catalysis and the chemistry of graphene. This is followed by chapters that cover the chemistry of graphene compounds. Next, it covers the functionalization of graphene into catalytic materials and its role in the synthesis of nanocomposites. Finally, the book delves into the complex aspects of graphene carbocatalysis: recent advances in graphene supported palladium catalysts for coupling reactions, applications of graphene-based catalysts in multicomponent, domino reactions, oxidation and reduction reactions, and recent trends in biocatalytic properties of graphene-based composites are all discussed in detail.
This volume discusses the theoretical fundamentals and potential applications of the original electro-Fenton (EF) process and its most innovative and promising versions, all of which are classified as electrochemical advanced oxidation processes. It consists of 15 chapters that review the latest advances and trends, material selection, reaction and reactor modeling and EF scale-up. It particularly focuses on the applications of EF process in the treatment of toxic and persistent organic pollutants in water and soil, showing highly efficient removal for both lab-scale and pre-pilot setups. Indeed, the EF technology is now mature enough to be brought to market, and this collection of contributions from leading experts in the field constitutes a timely milestone for scientists and engineers.