Graph Theory and Combinatorics 1988

Graph Theory and Combinatorics 1988

Author: B. Bollobás

Publisher: Elsevier

Published: 1989-07-01

Total Pages: 419

ISBN-13: 0080867839

DOWNLOAD EBOOK

Combinatorics has not been an established branch of mathematics for very long: the last quarter of a century has seen an explosive growth in the subject. This growth has been largely due to the doyen of combinatorialists, Paul Erdős, whose penetrating insight and insatiable curiosity has provided a huge stimulus for workers in the field. There is hardly any branch of combinatorics that has not been greatly enriched by his ideas.This volume is dedicated to Paul Erdős on the occasion of his seventy-fifth birthday.


Applications of Combinatorics and Graph Theory to the Biological and Social Sciences

Applications of Combinatorics and Graph Theory to the Biological and Social Sciences

Author: Fred Roberts

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 345

ISBN-13: 1468463810

DOWNLOAD EBOOK

This IMA Volume in Mathematics and its Applications Applications of Combinatorics and Graph Theory to the Biological and Social Sciences is based on the proceedings of a workshop which was an integral part of the 1987-88 IMA program on APPLIED COMBINATORICS. We are grateful to the Scientific Committee: Victor Klee (Chairman), Daniel Kleitman, Dijen Ray-Chaudhuri and Dennis Stanton for planning and implementing an exciting and stimulating year long program. We especially thank the Workshop Organizers, Joel Cohen and Fred Roberts, for organizing a workshop which brought together many of the major figures in a variety of research fields connected with the application of combinatorial ideas to the social and biological sciences. A vner Friedman Willard Miller APPLICATIONS OF COMBINATORICS AND GRAPH THEORY TO THE BIOLOGICAL AND SOCIAL SCIENCES: SEVEN FUNDAMENTAL IDEAS FRED S. RoBERTS* Abstract. To set the stage for the other papers in this volume, seven fundamental concepts which arise in the applications of combinatorics and graph theory in the biological and social sciences are described. These ideas are: RNA chains as "words" in a 4 letter alphabet; interval graphs; competition graphs or niche overlap graphs; qualitative stability; balanced signed graphs; social welfare functions; and semiorders. For each idea, some basic results are presented, some recent results are given, and some open problems are mentioned.


Geometric Algorithms and Combinatorial Optimization

Geometric Algorithms and Combinatorial Optimization

Author: Martin Grötschel

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 374

ISBN-13: 3642978819

DOWNLOAD EBOOK

Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.


Computational Discrete Mathematics

Computational Discrete Mathematics

Author: Sriram Pemmaraju

Publisher: Cambridge University Press

Published: 2009-10-15

Total Pages: 615

ISBN-13: 1107268710

DOWNLOAD EBOOK

This book was first published in 2003. Combinatorica, an extension to the popular computer algebra system Mathematica®, is the most comprehensive software available for teaching and research applications of discrete mathematics, particularly combinatorics and graph theory. This book is the definitive reference/user's guide to Combinatorica, with examples of all 450 Combinatorica functions in action, along with the associated mathematical and algorithmic theory. The authors cover classical and advanced topics on the most important combinatorial objects: permutations, subsets, partitions, and Young tableaux, as well as all important areas of graph theory: graph construction operations, invariants, embeddings, and algorithmic graph theory. In addition to being a research tool, Combinatorica makes discrete mathematics accessible in new and exciting ways to a wide variety of people, by encouraging computational experimentation and visualization. The book contains no formal proofs, but enough discussion to understand and appreciate all the algorithms and theorems it contains.


Modern Graph Theory

Modern Graph Theory

Author: Bela Bollobas

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 408

ISBN-13: 1461206197

DOWNLOAD EBOOK

An in-depth account of graph theory, written for serious students of mathematics and computer science. It reflects the current state of the subject and emphasises connections with other branches of pure mathematics. Recognising that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavour of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory, the book presents a detailed account of newer topics, including Szemerédis Regularity Lemma and its use, Shelahs extension of the Hales-Jewett Theorem, the precise nature of the phase transition in a random graph process, the connection between electrical networks and random walks on graphs, and the Tutte polynomial and its cousins in knot theory. Moreover, the book contains over 600 well thought-out exercises: although some are straightforward, most are substantial, and some will stretch even the most able reader.


Combinatorics And Graph Theory '95 - Proceedings Of The Summer School And International Conference On Combinatorics

Combinatorics And Graph Theory '95 - Proceedings Of The Summer School And International Conference On Combinatorics

Author: Tung-hsin Ku

Publisher: World Scientific

Published: 1995-05-31

Total Pages: 530

ISBN-13: 9814548960

DOWNLOAD EBOOK

This volume contains selected papers presented at the Summer School and International Conference on Combinatorics. The topics include Combinatorial Algorithms, Combinatorial Geometry, Combinatorial Optimization, Combinatorial Matrix Theory, Hypergraph and others.


The Mathematics of Paul Erdős II

The Mathematics of Paul Erdős II

Author: Ronald L. Graham

Publisher: Springer Science & Business Media

Published: 2013-08-04

Total Pages: 617

ISBN-13: 1461472547

DOWNLOAD EBOOK

This is the most comprehensive survey of the mathematical life of the legendary Paul Erdős (1913-1996), one of the most versatile and prolific mathematicians of our time. For the first time, all the main areas of Erdős' research are covered in a single project. Because of overwhelming response from the mathematical community, the project now occupies over 1000 pages, arranged into two volumes. These volumes contain both high level research articles as well as key articles that survey some of the cornerstones of Erdős' work, each written by a leading world specialist in the field. A special chapter "Early Days", rare photographs, and art related to Erdős complement this striking collection. A unique contribution is the bibliography on Erdős' publications: the most comprehensive ever published. This new edition, dedicated to the 100th anniversary of Paul Erdős' birth, contains updates on many of the articles from the two volumes of the first edition, several new articles from prominent mathematicians, a new introduction, and more biographical information about Paul Erdős with an updated list of publications. The second volume contains chapters on graph theory and combinatorics, extremal and Ramsey theory, and a section on infinity that covers Erdős' research on set theory. All of these chapters are essentially updated, particularly the extremal theory chapter that contains a survey of flag algebras, a new technique for solving extremal problems.


The Mathematics of Paul Erdös II

The Mathematics of Paul Erdös II

Author: Ronald L. Graham

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 591

ISBN-13: 3642604064

DOWNLOAD EBOOK

In 1992, when Paul Erdos was awarded a Doctor Honoris Causa by Charles University in Prague, a small conference was held, bringing together a distin guished group of researchers with interests spanning a variety of fields related to Erdos' own work. At that gathering, the idea occurred to several of us that it might be quite appropriate at this point in Erdos' career to solicit a col lection of articles illustrating various aspects of Erdos' mathematical life and work. The response to our solicitation was immediate and overwhelming, and these volumes are the result. Regarding the organization, we found it convenient to arrange the papers into six chapters, each mirroring Erdos' holistic approach to mathematics. Our goal was not merely a (random) collection of papers but rather a thor oughly edited volume composed in large part by articles explicitly solicited to illustrate interesting aspects of Erdos and his life and work. Each chap ter includes an introduction which often presents a sample of related Erdos' problems "in his own words". All these (sometimes lengthy) introductions were written jointly by editors. We wish to thank the nearly 70 contributors for their outstanding efforts (and their patience). In particular, we are grateful to Bela Bollobas for his extensive documentation of Paul Erdos' early years and mathematical high points (in the first part of this volume); our other authors are acknowledged in their respective chapters. We also want to thank A. Bondy, G. Hahn, I.


Graphs and Matrices

Graphs and Matrices

Author: Ravindra B. Bapat

Publisher: Springer

Published: 2014-09-19

Total Pages: 197

ISBN-13: 1447165691

DOWNLOAD EBOOK

This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reorganized. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory, it will also benefit readers in the sciences and engineering.


Graph Theory

Graph Theory

Author: Ronald Gould

Publisher: Courier Corporation

Published: 2013-10-03

Total Pages: 353

ISBN-13: 0486320367

DOWNLOAD EBOOK

An introductory text in graph theory, this treatment covers primary techniques and includes both algorithmic and theoretical problems. Algorithms are presented with a minimum of advanced data structures and programming details. 1988 edition.