Graph Based Multimedia Analysis

Graph Based Multimedia Analysis

Author: Ananda S Chowdhury

Publisher: Elsevier

Published: 2024-08-07

Total Pages: 368

ISBN-13: 0443214867

DOWNLOAD EBOOK

Graph Based Multimedia Analysis applies concepts from graph theory to the problems of analyzing overabundant video data. Video data can be quite diverse: exocentric (captured by a standard camera) or egocentric (captured by a wearable device like Google Glass); of various durations (ranging from a few seconds to several hours); and could be from a single source or multiple sources. Efficient extraction of important information from such a large class of diverse video data can be overwhelming. The book, with its rich repertoire of theoretically elegant solutions, from graph theory in conjunction with deep learning, constrained optimization, and game theory, empowers the audience to achieve tasks like obtaining concise yet useful summaries and precisely recognizing single as well as multiple actions in a computationally efficient manner. The book provides a unique treatise on topics like egocentric video analysis and scalable video processing. - Addresses a number of challenging state-of-the-art problems in multimedia analysis like summarization, co-summarization, and action recognition - Handles a wide class of video with different genres, durations, and numbers - Applies a class of theoretically rich algorithms from the discipline of graph theory, in conjunction with deep learning, constrained optimization and game theory - Includes thorough complexity analyses of the proposed solutions, and an appendix containing implementable source codes


Graph-Based Social Media Analysis

Graph-Based Social Media Analysis

Author: Ioannis Pitas

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 436

ISBN-13: 1498719058

DOWNLOAD EBOOK

Focused on the mathematical foundations of social media analysis, Graph-Based Social Media Analysis provides a comprehensive introduction to the use of graph analysis in the study of social and digital media. It addresses an important scientific and technological challenge, namely the confluence of graph analysis and network theory with linear alge


Graph Analysis and Visualization

Graph Analysis and Visualization

Author: Richard Brath

Publisher: John Wiley & Sons

Published: 2015-01-30

Total Pages: 544

ISBN-13: 1118845870

DOWNLOAD EBOOK

Wring more out of the data with a scientific approach to analysis Graph Analysis and Visualization brings graph theory out of the lab and into the real world. Using sophisticated methods and tools that span analysis functions, this guide shows you how to exploit graph and network analytic techniques to enable the discovery of new business insights and opportunities. Published in full color, the book describes the process of creating powerful visualizations using a rich and engaging set of examples from sports, finance, marketing, security, social media, and more. You will find practical guidance toward pattern identification and using various data sources, including Big Data, plus clear instruction on the use of software and programming. The companion website offers data sets, full code examples in Python, and links to all the tools covered in the book. Science has already reaped the benefit of network and graph theory, which has powered breakthroughs in physics, economics, genetics, and more. This book brings those proven techniques into the world of business, finance, strategy, and design, helping extract more information from data and better communicate the results to decision-makers. Study graphical examples of networks using clear and insightful visualizations Analyze specifically-curated, easy-to-use data sets from various industries Learn the software tools and programming languages that extract insights from data Code examples using the popular Python programming language There is a tremendous body of scientific work on network and graph theory, but very little of it directly applies to analyst functions outside of the core sciences – until now. Written for those seeking empirically based, systematic analysis methods and powerful tools that apply outside the lab, Graph Analysis and Visualization is a thorough, authoritative resource.


Graph-Based Methods in Computer Vision: Developments and Applications

Graph-Based Methods in Computer Vision: Developments and Applications

Author: Bai, Xiao

Publisher: IGI Global

Published: 2012-07-31

Total Pages: 395

ISBN-13: 1466618922

DOWNLOAD EBOOK

Computer vision, the science and technology of machines that see, has been a rapidly developing research area since the mid-1970s. It focuses on the understanding of digital input images in many forms, including video and 3-D range data. Graph-Based Methods in Computer Vision: Developments and Applications presents a sampling of the research issues related to applying graph-based methods in computer vision. These methods have been under-utilized in the past, but use must now be increased because of their ability to naturally and effectively represent image models and data. This publication explores current activity and future applications of this fascinating and ground-breaking topic.


Graph-Based Clustering and Data Visualization Algorithms

Graph-Based Clustering and Data Visualization Algorithms

Author: Ágnes Vathy-Fogarassy

Publisher: Springer Science & Business Media

Published: 2013-05-24

Total Pages: 120

ISBN-13: 1447151585

DOWNLOAD EBOOK

This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on the synergistic combination of clustering, graph-theory, neural networks, data visualization, dimensionality reduction, fuzzy methods, and topology learning. The work contains numerous examples to aid in the understanding and implementation of the proposed algorithms, supported by a MATLAB toolbox available at an associated website.


Networks in Cell Biology

Networks in Cell Biology

Author: Mark Buchanan

Publisher: Cambridge University Press

Published: 2010-05-13

Total Pages: 282

ISBN-13: 0521882737

DOWNLOAD EBOOK

Key introductory text for graduate students and researchers in physics, biology and biochemistry.


Graph-Based Representations in Pattern Recognition

Graph-Based Representations in Pattern Recognition

Author: Pasquale Foggia

Publisher: Springer

Published: 2017-05-08

Total Pages: 290

ISBN-13: 331958961X

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 11th IAPR-TC-15 International Workshop on Graph-Based Representation in Pattern Recognition, GbRPR 2017, held in Anacapri, Italy, in May 2017. The 25 full papers and 2 abstracts of invited papers presented in this volume were carefully reviewed and selected from 31 submissions. The papers discuss research results and applications in the intersection of pattern recognition, image analysis, graph theory, and also the application of graphs to pattern recognition problems in other fields like computational topology, graphic recognition systems and bioinformatics.


Graph-based Knowledge Representation

Graph-based Knowledge Representation

Author: Michel Chein

Publisher: Springer Science & Business Media

Published: 2008-10-20

Total Pages: 428

ISBN-13: 1848002866

DOWNLOAD EBOOK

This book provides a de?nition and study of a knowledge representation and r- soning formalism stemming from conceptual graphs, while focusing on the com- tational properties of this formalism. Knowledge can be symbolically represented in many ways. The knowledge representation and reasoning formalism presented here is a graph formalism – knowledge is represented by labeled graphs, in the graph theory sense, and r- soning mechanisms are based on graph operations, with graph homomorphism at the core. This formalism can thus be considered as related to semantic networks. Since their conception, semantic networks have faded out several times, but have always returned to the limelight. They faded mainly due to a lack of formal semantics and the limited reasoning tools proposed. They have, however, always rebounded - cause labeled graphs, schemas and drawings provide an intuitive and easily und- standable support to represent knowledge. This formalism has the visual qualities of any graphic model, and it is logically founded. This is a key feature because logics has been the foundation for knowledge representation and reasoning for millennia. The authors also focus substantially on computational facets of the presented formalism as they are interested in knowledge representation and reasoning formalisms upon which knowledge-based systems can be built to solve real problems. Since object structures are graphs, naturally graph homomorphism is the key underlying notion and, from a computational viewpoint, this moors calculus to combinatorics and to computer science domains in which the algorithmicqualitiesofgraphshavelongbeenstudied,asindatabasesandconstraint networks.


Graph-based Natural Language Processing and Information Retrieval

Graph-based Natural Language Processing and Information Retrieval

Author: Rada Mihalcea

Publisher: Cambridge University Press

Published: 2011-04-11

Total Pages: 201

ISBN-13: 1139498827

DOWNLOAD EBOOK

Graph theory and the fields of natural language processing and information retrieval are well-studied disciplines. Traditionally, these areas have been perceived as distinct, with different algorithms, different applications and different potential end-users. However, recent research has shown that these disciplines are intimately connected, with a large variety of natural language processing and information retrieval applications finding efficient solutions within graph-theoretical frameworks. This book extensively covers the use of graph-based algorithms for natural language processing and information retrieval. It brings together topics as diverse as lexical semantics, text summarization, text mining, ontology construction, text classification and information retrieval, which are connected by the common underlying theme of the use of graph-theoretical methods for text and information processing tasks. Readers will come away with a firm understanding of the major methods and applications in natural language processing and information retrieval that rely on graph-based representations and algorithms.


Graph-Based Representations in Pattern Recognition

Graph-Based Representations in Pattern Recognition

Author: Donatello Conte

Publisher: Springer

Published: 2019-06-10

Total Pages: 257

ISBN-13: 3030200817

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 12th IAPR-TC-15 International Workshop on Graph-Based Representation in Pattern Recognition, GbRPR 2019, held in Tours, France, in June 2019. The 22 full papers included in this volume together with an invited talk were carefully reviewed and selected from 28 submissions. The papers discuss research results and applications at the intersection of pattern recognition, image analysis, and graph theory. They cover topics such as graph edit distance, graph matching, machine learning for graph problems, network and graph embedding, spectral graph problems, and parallel algorithms for graph problems.