"Updated and revised to keep pace with developments, the third edition of Grape Grower's Handbook: a Guide to Viticulture for Wine Production is meant to be a stand-alone publication that describes all aspects of wine grape production. The book is written in a nontechnical format designed to be practical and well-suited for vineyard applications."--Back cover.
Grapes (Vitis spp.) are economically the most important fruit species in the world. Over the last decades many scientific advances have led to understand more deeply key physiological, biochemical, and molecular aspects of grape berry maturation. However, our knowledge on how grapevines respond to environmental stimuli and deal with biotic and abiotic stresses is still fragmented. Thus, this area of research is wide open for new scientific and technological advancements. Particularly, in the context of climate change, viticulture will have to adapt to higher temperatures, light intensity and atmospheric CO2 concentration, while water availability is expected to decrease in many viticultural regions, which poses new challenges to scientists and producers. With Grapevine in a Changing Environment, readers will benefit from a comprehensive and updated coverage on the intricate grapevine defense mechanisms against biotic and abiotic stress and on the new generation techniques that may be ultimately used to implement appropriate strategies aimed at the production and selection of more adapted genotypes. The book also provides valuable references in this research area and original data from several laboratories worldwide. Written by 63 international experts on grapevine ecophysiology, biochemistry and molecular biology, the book is a reference for a wide audience with different backgrounds, from plant physiologists, biochemists and graduate and post-graduate students, to viticulturists and enologists.
This book covers about 20 grape species that are vitally important in breeding programs and provide information on approximately 150 of the most familiar grape rootstocks in the world. Today, grape rootstocks play a fundamental role in resistance to biotic and abiotic stresses and adaptation of grapevine to different environmental conditions, a factor that has opened commercial grape growing up to regions that might otherwise be overlooked. Grape rootstocks can be used for adaptation to a variety of soil conditions, including soil texture, depth, nutrient availability, pH, salinity, lime content, water availability (drought), and water drainage. Rootstocks can also be used to shift scion cultivar; the timing of various key phenological events and indirectly affects vineyard design. There are around 1500 grape rootstocks developed in the world, of which around 50 are commonly used as commercial rootstock. North American species account for around 30 species, and two-third of them have already been used for rootstock breeding at one time or another. However, the most commonly available rootstocks are derived from just three American species (V. berlandieri, V. rupestris, and V. riparia). Therefore, the most common grape rootstocks have a narrow genetic base, and efforts to extend the gene pools for breeding programs by using the other species are of ongoing importance to the industry and scientific community.
The Science of Grapevines: Anatomy and Physiology is an introduction to the physical structure of the grapevine, its various organs, their functions and their interactions with the environment. Beginning with a brief overview of the botanical classification (including an introduction to the concepts of species, cultivars, clones, and rootstocks), plant morphology and anatomy, and growth cycles of grapevines, The Science of Grapevines covers the basic concepts in growth and development, water relations, photosynthesis and respiration, mineral uptake and utilization, and carbon partitioning. These concepts are put to use to understand plant-environment interactions including canopy dynamics, yield formation, and fruit composition, and concludes with an introduction to stress physiology, including water stress (drought and flooding), nutrient deficiency and excess, extreme temperatures (heat and cold), and the impact and response to of other organisms. Based on the author's years of teaching grapevine anatomy as well as his research experience with grapevines and practical experience growing grapes, this book provides an important guide to understanding the entire plant. - Chapter 7 broken into two chapters, now "Environmental Constraints and Stress Physiology and Chapter 8 "Living with Other Organisms" to better reflect specific concepts - Integration of new research results including: - Latest research on implementing drip irrigation to maximize sugar accumulation within grapes - Effect of drought stress on grapevine's hydraulic system and options for optimum plant maintenance in drought conditions - The recently discovered plant hormone – strigolactones – and their contribution of apical dominance that has suddenly outdated dogma on apical dominance control - Chapter summaries added - Key literature references missed in the first edition as well as references to research completed since the 1e publication will be added
"Very strange things are afoot at Fablehaven. Someone or something has released a plague that transforms beings of light into creatures of darkness. Seth discovers the problem early, but as the infectious disease spreads, it becomes clear that the preserve cannot hold out for long. In dire need of help, the Sorensons question where to turn. The Sphinx has always given sound advice -- but is he a traitor? Inside the Quiet Box, Vanessa might have information that could lead to a cure, but can she be trusted?"--Provided by publisher
The domestication of grapes dates back five thousand years ago and has spread to nearly all continents. In recent years, grape acreage has increased dramatically in new regions, including the United States of America, Chile, Asia (China and India), and Turkey. A major limiting factor to the sustained production of premium grapes and wines is infections by viruses. The advent of powerful molecular and metagenomics technologies, such as molecular cloning and next generation sequencing, allowed the discovery of new viruses from grapes. To date, grapevine is susceptible to 64 viruses that belong to highly diverse taxonomic groups. The most damaging diseases include: (1) infectious degeneration; (2) leafroll disease complex; and (3) rugose wood complex. Recently, two new disease syndromes have been recognized: Syrah decline and red blotch. Losses due to fanleaf degeneration are estimated at $1 billion annually in France alone. Other diseases including leafroll, rugose wood, Syrah de cline and red blotch can result in total crop loss several years post-infection. This situation is further exacerbated by mixed infections with multiple viruses and other biotic as well as adverse abiotic environmental conditions, such as drought and winter damage, causing even greater destruction. The book builds upon the last handbook (written over twenty years ago) on the part of diagnostics and extensively expands its scope by inclusion of molecular biology aspects of select viruses that are widespread and economically most important. This includes most current information on the biology, transmission, genome replication, transcription, subcellular localization, as well as virus-host interactions. It also touches on several novel areas of scientific inquiry. It also contains suggested directions for future research in the field of grapevine virology.