Grammar-Based Feature Generation for Time-Series Prediction

Grammar-Based Feature Generation for Time-Series Prediction

Author: Anthony Mihirana De Silva

Publisher: Springer

Published: 2015-02-14

Total Pages: 105

ISBN-13: 9812874119

DOWNLOAD EBOOK

This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. Application of machine learning techniques to predict time-series continues to attract considerable attention due to the difficulty of the prediction problems compounded by the non-linear and non-stationary nature of the real world time-series. The performance of machine learning techniques, among other things, depends on suitable engineering of features. This book proposes a systematic way for generating suitable features using context-free grammar. A number of feature selection criteria are investigated and a hybrid feature generation and selection algorithm using grammatical evolution is proposed. The book contains graphical illustrations to explain the feature generation process. The proposed approaches are demonstrated by predicting the closing price of major stock market indices, peak electricity load and net hourly foreign exchange client trade volume. The proposed method can be applied to a wide range of machine learning architectures and applications to represent complex feature dependencies explicitly when machine learning cannot achieve this by itself. Industrial applications can use the proposed technique to improve their predictions.


Feature Engineering for Machine Learning and Data Analytics

Feature Engineering for Machine Learning and Data Analytics

Author: Guozhu Dong

Publisher: CRC Press

Published: 2018-03-14

Total Pages: 400

ISBN-13: 1351721275

DOWNLOAD EBOOK

Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features. The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively. This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.


Artistic Style Characteriza

Artistic Style Characteriza

Author: Tieta PUTRI

Publisher: Infinite Study

Published:

Total Pages: 131

ISBN-13:

DOWNLOAD EBOOK

Automatic style characterization is the process of measuring, extracting, and analysing different formal elements. Brushstroke technique, in conjunction with other formal elements such as colour and texture, play a vital role in defining an artistic style. This thesis explores the stroke-based style analysis of the paintings of Vincent van Gogh, who is well-known for his use of wide and repetitive brushstrokes. Novel brushstroke extraction techniques are used to segment and analyse Van Gogh’s brushstrokes. The extracted features can then be compiled into a feature set which represents the quantified brushstrokes’ properties and tested using several classification based tests. The most contributing factor for detecting visible brushstroke is the brushstroke’s texture, due to the fact that the texture-based segmentation methods give more satisfactory results in extracting visible brushstrokes with their average classification accuracy and F-measure being 98.30% and 0.973 respectively.


Wearable Systems Based Gait Monitoring and Analysis

Wearable Systems Based Gait Monitoring and Analysis

Author: Shuo Gao

Publisher: Springer Nature

Published: 2022-03-16

Total Pages: 244

ISBN-13: 3030973328

DOWNLOAD EBOOK

Wearable Systems Based Gait Monitoring and Analysis provides a thorough overview of wearable gait monitoring techniques and their use in health analysis. The text starts with an examination of the relationship between the human body’s physical condition and gait, and then introduces and explains nine mainstream sensing mechanisms, including piezoresistive, resistive, capacitive, piezoelectric, inductive, optical, air pressure, EMG and IMU-based architectures. Gait sensor design considerations in terms of geometry and deployment are also introduced. Diverse processing algorithms for manipulating sensors outputs to transform raw data to understandable gait features are discussed. Furthermore, gait analysis-based health monitoring demonstrations are given at the end of this book, including both medical and occupational applications. The book will enable students of biomedical engineering, electrical engineering, signal processing, and ergonomics and practitioners to understand the medical and occupational applications of engineering-based gait analysis and falling injury prevention methods.


Intelligent Mobile Projects with TensorFlow

Intelligent Mobile Projects with TensorFlow

Author: Jeff Tang

Publisher: Packt Publishing Ltd

Published: 2018-05-22

Total Pages: 396

ISBN-13: 1788628802

DOWNLOAD EBOOK

Create Deep Learning and Reinforcement Learning apps for multiple platforms with TensorFlow Key Features Build TensorFlow-powered AI applications for mobile and embedded devices Learn modern AI topics such as computer vision, NLP, and deep reinforcement learning Get practical insights and exclusive working code not available in the TensorFlow documentation Book Description As a developer, you always need to keep an eye out and be ready for what will be trending soon, while also focusing on what's trending currently. So, what's better than learning about the integration of the best of both worlds, the present and the future? Artificial Intelligence (AI) is widely regarded as the next big thing after mobile, and Google's TensorFlow is the leading open source machine learning framework, the hottest branch of AI. This book covers more than 10 complete iOS, Android, and Raspberry Pi apps powered by TensorFlow and built from scratch, running all kinds of cool TensorFlow models offline on-device: from computer vision, speech and language processing to generative adversarial networks and AlphaZero-like deep reinforcement learning. You’ll learn how to use or retrain existing TensorFlow models, build your own models, and develop intelligent mobile apps running those TensorFlow models. You'll learn how to quickly build such apps with step-by-step tutorials and how to avoid many pitfalls in the process with lots of hard-earned troubleshooting tips. What you will learn Classify images with transfer learning Detect objects and their locations Transform pictures with amazing art styles Understand simple speech commands Describe images in natural language Recognize drawing with Convolutional Neural Network and Long Short-Term Memory Predict stock price with Recurrent Neural Network in TensorFlow and Keras Generate and enhance images with generative adversarial networks Build AlphaZero-like mobile game app in TensorFlow and Keras Use TensorFlow Lite and Core ML on mobile Develop TensorFlow apps on Raspberry Pi that can move, see, listen, speak, and learn Who this book is for If you're an iOS/Android developer interested in building and retraining others' TensorFlow models and running them in your mobile apps, or if you're a TensorFlow developer and want to run your new and amazing TensorFlow models on mobile devices, this book is for you. You'll also benefit from this book if you're interested in TensorFlow Lite, Core ML, or TensorFlow on Raspberry Pi.


Interpretable Machine Learning

Interpretable Machine Learning

Author: Christoph Molnar

Publisher: Lulu.com

Published: 2020

Total Pages: 320

ISBN-13: 0244768528

DOWNLOAD EBOOK

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.


Genetic Programming Theory and Practice XVII

Genetic Programming Theory and Practice XVII

Author: Wolfgang Banzhaf

Publisher: Springer Nature

Published: 2020-05-07

Total Pages: 423

ISBN-13: 3030399583

DOWNLOAD EBOOK

These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. In this year’s edition, the topics covered include many of the most important issues and research questions in the field, such as: opportune application domains for GP-based methods, game playing and co-evolutionary search, symbolic regression and efficient learning strategies, encodings and representations for GP, schema theorems, and new selection mechanisms.The volume includes several chapters on best practices and lessons learned from hands-on experience. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.


Artificial Intelligence in Medicine

Artificial Intelligence in Medicine

Author: Martin Michalowski

Publisher: Springer Nature

Published: 2020-09-25

Total Pages: 505

ISBN-13: 3030591379

DOWNLOAD EBOOK

The LNAI 12299 constitutes the papers of the 18th International Conference on Artificial Intelligence in Medicine, AIME 2020, which will be held online in August 2020. The 42 full papers presented together with 1short papers in this volume were carefully reviewed and selected from a total of 103 submissions. The AIME 2020 goals were to present and consolidate the international state of the art of AI in biomedical research from the perspectives of theory, methodology, systems, and applications.