Gorenstein Homological Algebra

Gorenstein Homological Algebra

Author: Alina Iacob

Publisher: CRC Press

Published: 2018-08-06

Total Pages: 214

ISBN-13: 1351660268

DOWNLOAD EBOOK

Gorenstein homological algebra is an important area of mathematics, with applications in commutative and noncommutative algebra, model category theory, representation theory, and algebraic geometry. While in classical homological algebra the existence of the projective, injective, and flat resolutions over arbitrary rings are well known, things are a little different when it comes to Gorenstein homological algebra. The main open problems in this area deal with the existence of the Gorenstein injective, Gorenstein projective, and Gorenstein flat resolutions. Gorenstein Homological Algebra is especially suitable for graduate students interested in homological algebra and its applications.


Gorenstein Dimensions

Gorenstein Dimensions

Author: Lars W. Christensen

Publisher: Springer

Published: 2007-05-06

Total Pages: 209

ISBN-13: 3540400087

DOWNLOAD EBOOK

This book is intended as a reference for mathematicians working with homological dimensions in commutative algebra and as an introduction to Gorenstein dimensions for graduate students with an interest in the same. Any admirer of classics like the Auslander-Buchsbaum-Serre characterization of regular rings, and the Bass and Auslander-Buchsbaum formulas for injective and projective dimension of f.g. modules will be intrigued by this book's content. Readers should be well-versed in commutative algebra and standard applications of homological methods. The framework is that of complexes, but all major results are restated for modules in traditional notation, and an appendix makes the proofs accessible for even the casual user of hyperhomological methods.


Relative Homological Algebra

Relative Homological Algebra

Author: Edgar E. Enochs

Publisher: Walter de Gruyter

Published: 2011-10-27

Total Pages: 377

ISBN-13: 3110215217

DOWNLOAD EBOOK

This is the second revised edition of an introduction to contemporary relative homological algebra. It supplies important material essential to understand topics in algebra, algebraic geometry and algebraic topology. Each section comes with exercises providing practice problems for students as well as additional important results for specialists. In this new edition the authors have added well-known additional material in the first three chapters, and added new material that was not available at the time the original edition was published. In particular, the major changes are the following: Chapter 1: Section 1.2 has been rewritten to clarify basic notions for the beginner, and this has necessitated a new Section 1.3. Chapter 3: The classic work of D. G. Northcott on injective envelopes and inverse polynomials is finally included. This provides additional examples for the reader. Chapter 11: Section 11.9 on Kaplansky classes makes volume one more up to date. The material in this section was not available at the time the first edition was published. The authors also have clarified some text throughout the book and updated the bibliography by adding new references. The book is also suitable for an introductory course in commutative and ordinary homological algebra.


Stable Module Theory

Stable Module Theory

Author: Maurice Auslander

Publisher: American Mathematical Soc.

Published: 1969

Total Pages: 150

ISBN-13: 0821812947

DOWNLOAD EBOOK

The notions of torsion and torsion freeness have played a very important role in module theory--particularly in the study of modules over integral domains. Furthermore, the use of homological techniques in this connection has been well established. It is the aim of this paper to extend these techniques and to show that this extension leads naturally to several new concepts (e.g. k-torsion freeness and Gorenstein dimension) which are useful in the classification of modules and rings.


Covers and Envelopes in the Category of Complexes of Modules

Covers and Envelopes in the Category of Complexes of Modules

Author: J.R. Garcia Rozas

Publisher: CRC Press

Published: 1999-05-11

Total Pages: 160

ISBN-13: 9781584880042

DOWNLOAD EBOOK

Over the last few years, the study of complexes has become increasingly important. To date, however, most of the research is scattered throughout the literature or available only as lecture notes. Covers and Envelopes in the Category of Complexes of Modules collects these scattered notes and results into a single, concise volume that provides an account of recent developments in the theory and presents several new and important ideas. The author introduces the theory of complexes of modules using only elementary tools-making the field more accessible to non-specialists. He focuses the study on envelopes and covers in this category with respect to some well established and important classes of complexes. He places particular emphasis on DG-injective and DG-projective complexes and flat and DG-flat covers. Other topics covered include Zorn's Lemma for categories, preserving and reflecting covers by functors, orthogonality in the category of complexes, Gorenstein injective and projective complexes, and pure sequences of complexes. Along with its value as a collection of recent work in the field, Covers and Envelopes in the Category of Complexes of Modules presents powerful new ideas that will undoubtedly advance homological methods. Mathematicians-especially researchers in module theory and homological algebra-will welcome this volume as a reference guide and for its new and important results.


Integral Closure of Ideals, Rings, and Modules

Integral Closure of Ideals, Rings, and Modules

Author: Craig Huneke

Publisher: Cambridge University Press

Published: 2006-10-12

Total Pages: 446

ISBN-13: 0521688604

DOWNLOAD EBOOK

Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.


Topics in the Homological Theory of Modules Over Commutative Rings

Topics in the Homological Theory of Modules Over Commutative Rings

Author: Melvin Hochster

Publisher: American Mathematical Soc.

Published: 1975

Total Pages: 86

ISBN-13: 0821816748

DOWNLOAD EBOOK

Contains expository lectures from the CBMS Regional Conference in Mathematics held at the University of Nebraska, June 1974. This book deals mainly with developments and still open questions in the homological theory of modules over commutative (usually, Noetherian) rings.


Approximations and Endomorphism Algebras of Modules

Approximations and Endomorphism Algebras of Modules

Author: Rüdiger Göbel

Publisher: Walter de Gruyter

Published: 2012-10-01

Total Pages: 1002

ISBN-13: 3110218119

DOWNLOAD EBOOK

This second, revised and substantially extended edition of Approximations and Endomorphism Algebras of Modules reflects both the depth and the width of recent developments in the area since the first edition appeared in 2006. The new division of the monograph into two volumes roughly corresponds to its two central topics, approximation theory (Volume 1) and realization theorems for modules (Volume 2). It is a widely accepted fact that the category of all modules over a general associative ring is too complex to admit classification. Unless the ring is of finite representation type we must limit attempts at classification to some restricted subcategories of modules. The wild character of the category of all modules, or of one of its subcategories C, is often indicated by the presence of a realization theorem, that is, by the fact that any reasonable algebra is isomorphic to the endomorphism algebra of a module from C. This results in the existence of pathological direct sum decompositions, and these are generally viewed as obstacles to classification. In order to overcome this problem, the approximation theory of modules has been developed. The idea here is to select suitable subcategories C whose modules can be classified, and then to approximate arbitrary modules by those from C. These approximations are neither unique nor functorial in general, but there is a rich supply available appropriate to the requirements of various particular applications. The authors bring the two theories together. The first volume, Approximations, sets the scene in Part I by introducing the main classes of modules relevant here: the S-complete, pure-injective, Mittag-Leffler, and slender modules. Parts II and III of the first volume develop the key methods of approximation theory. Some of the recent applications to the structure of modules are also presented here, notably for tilting, cotilting, Baer, and Mittag-Leffler modules. In the second volume, Predictions, further basic instruments are introduced: the prediction principles, and their applications to proving realization theorems. Moreover, tools are developed there for answering problems motivated in algebraic topology. The authors concentrate on the impossibility of classification for modules over general rings. The wild character of many categories C of modules is documented here by the realization theorems that represent critical R-algebras over commutative rings R as endomorphism algebras of modules from C. The monograph starts from basic facts and gradually develops the theory towards its present frontiers. It is suitable both for graduate students interested in algebra and for experts in module and representation theory.


Commutative Algebra

Commutative Algebra

Author: David Eisenbud

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 784

ISBN-13: 1461253500

DOWNLOAD EBOOK

This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.