Good practices in sample-based area estimation

Good practices in sample-based area estimation

Author: Jonckheere, I.

Publisher: Food & Agriculture Org.

Published: 2024-02-14

Total Pages: 116

ISBN-13: 9251385319

DOWNLOAD EBOOK

Reducing Emissions from Deforestation and Forest Degradation, and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries (REDD+), as well as greenhouse gas reporting for the agriculture, forestry and other land use sector, requires land use changes to be characterized to estimate the associated greenhouse gas emissions or absorptions. It is becoming increasingly common to generate these estimates using sample-based area estimation (SBAE). This technique has been widely used in recent years in the generation of activity data – particularly for estimating areas of deforestation – for REDD+ measuring, reporting and verification. However, implementing countries and agencies have repeatedly highlighted the lack of guidance on how to address certain frequently encountered issues with this approach. This paper seeks to enable donors, academia, and countries that currently use or want to use SBAE for generating activity data for REDD+ or for other national or international reporting purposes, to delve into current good practice and existing literature, as well as gain a better understanding of the most pressing research needs in the area. The paper moreover will give non-experts an overview of area estimation, as well as its applications and limitations. Published by FAO with the collaborative support of several partners in the Global Forest Observations Initiative (GFOI), the World Bank and the Department for Energy Security and Net Zero of the United Kingdom of Great Britain and Northern Ireland, the paper is expected to contribute to improved forest data.


Introduction to Small Area Estimation Techniques

Introduction to Small Area Estimation Techniques

Author: Asian Development Bank

Publisher: Asian Development Bank

Published: 2020-05-01

Total Pages: 152

ISBN-13: 9292622234

DOWNLOAD EBOOK

This guide to small area estimation aims to help users compile more reliable granular or disaggregated data in cost-effective ways. It explains small area estimation techniques with examples of how the easily accessible R analytical platform can be used to implement them, particularly to estimate indicators on poverty, employment, and health outcomes. The guide is intended for staff of national statistics offices and for other development practitioners. It aims to help them to develop and implement targeted socioeconomic policies to ensure that the vulnerable segments of societies are not left behind, and to monitor progress toward the Sustainable Development Goals.


Author:

Publisher: Food & Agriculture Org.

Published:

Total Pages: 148

ISBN-13: 9251390940

DOWNLOAD EBOOK


Optical and SAR Remote Sensing of Urban Areas

Optical and SAR Remote Sensing of Urban Areas

Author: Courage Kamusoko

Publisher: Springer Nature

Published: 2021-12-02

Total Pages: 126

ISBN-13: 9811651493

DOWNLOAD EBOOK

This book introduces remotely sensed image processing for urban areas using optical and synthetic aperture radar (SAR) data and assists students, researchers, and remote sensing practitioners who are interested in land cover mapping using such data. There are many introductory and advanced books on optical and SAR remote sensing image processing, but most of them do not serve as good practical guides. However, this book is designed as a practical guide and a hands-on workbook, where users can explore data and methods to improve their land cover mapping skills for urban areas. Although there are many freely available earth observation data, the focus is on land cover mapping using Sentinel-1 C-band SAR and Sentinel-2 data. All remotely sensed image processing and classification procedures are based on open-source software applications such QGIS and R as well as cloud-based platforms such as Google Earth Engine (GEE). The book is organized into six chapters. Chapter 1 introduces geospatial machine learning, and Chapter 2 covers exploratory image analysis and transformation. Chapters 3 and 4 focus on mapping urban land cover using multi-seasonal Sentinel-2 imagery and multi-seasonal Sentinel-1 imagery, respectively. Chapter 5 discusses mapping urban land cover using multi-seasonal Sentinel-1 and Sentinel-2 imagery as well as other derived data such as spectral and texture indices. Chapter 6 concludes the book with land cover classification accuracy assessment.


Small Area Estimation and Microsimulation Modeling

Small Area Estimation and Microsimulation Modeling

Author: Azizur Rahman

Publisher: CRC Press

Published: 2016-11-30

Total Pages: 456

ISBN-13: 1315354942

DOWNLOAD EBOOK

Small Area Estimation and Microsimulation Modeling is the first practical handbook that comprehensively presents modern statistical SAE methods in the framework of ultramodern spatial microsimulation modeling while providing the novel approach of creating synthetic spatial microdata. Along with describing the necessary theories and their advantages and limitations, the authors illustrate the practical application of the techniques to a large number of substantive problems, including how to build up models, organize and link data, create synthetic microdata, conduct analyses, yield informative tables and graphs, and evaluate how the findings effectively support the decision making processes in government and non-government organizations. Features Covers both theoretical and applied aspects for real-world comparative research and regional statistics production Thoroughly explains how microsimulation modeling technology can be constructed using available datasets for reliable small area statistics Provides SAS codes that allow readers to utilize these latest technologies in their own work. This book is designed for advanced graduate students, academics, professionals and applied practitioners who are generally interested in small area estimation and/or microsimulation modeling and dealing with vital issues in social and behavioural sciences, applied economics and policy analysis, government and/or social statistics, health sciences, business, psychology, environmental and agriculture modeling, computational statistics and data simulation, spatial statistics, transport and urban planning, and geospatial modeling. Dr Azizur Rahman is a Senior Lecturer in Statistics and convenor of the Graduate Program in Applied Statistics at the Charles Sturt University, and an Adjunct Associate Professor of Public Health and Biostatistics at the University of Canberra. His research encompasses small area estimation, applied economics, microsimulation modeling, Bayesian inference and public health. He has more than 60 scholarly publications including two books. Dr. Rahman’s research is funded by the Australian Federal and State Governments, and he serves on a range of editorial boards including the International Journal of Microsimulation (IJM). Professor Ann Harding, AO is an Emeritus Professor of Applied Economics and Social Policy at the National Centre for Social and Economic Modelling (NATSEM) of the University of Canberra. She was the founder and inaugural Director of this world class Research Centre for more than sixteen years, and also a co-founder of the International Microsimulation Association (IMA) and served as the inaugural elected president of IMA from 2004 to 2011. She is a fellow of the Academy of the Social Sciences in Australia. She has more than 300 publications including several books in microsimulation modeling.


Missing Data and Small-Area Estimation

Missing Data and Small-Area Estimation

Author: Nicholas T. Longford

Publisher: Springer Science & Business Media

Published: 2005-08-05

Total Pages: 384

ISBN-13: 9781852337605

DOWNLOAD EBOOK

This book evolved from lectures, courses and workshops on missing data and small-area estimation that I presented during my tenure as the ?rst C- pion Fellow (2000–2002). For the Fellowship I proposed these two topics as areas in which the academic statistics could contribute to the development of government statistics, in exchange for access to the operational details and background that would inform the direction and sharpen the focus of a- demic research. After a few years of involvement, I have come to realise that the separation of ‘academic’ and ‘industrial’ statistics is not well suited to either party, and their integration is the key to progress in both branches. Most of the work on this monograph was done while I was a visiting l- turer at Massey University, Palmerston North, New Zealand. The hospitality and stimulating academic environment of their Institute of Information S- ence and Technology is gratefully acknowledged. I could not name all those who commented on my lecture notes and on the presentations themselves; apart from them, I want to thank the organisers and silent attendees of all the events, and, with a modicum of reluctance, the ‘grey ?gures’ who kept inquiring whether I was any nearer the completion of whatever stage I had been foolish enough to attach a date.


Small Area Estimation

Small Area Estimation

Author: J. N. K. Rao

Publisher: John Wiley & Sons

Published: 2015-08-10

Total Pages: 476

ISBN-13: 111873579X

DOWNLOAD EBOOK

Praise for the First Edition "This pioneering work, in which Rao provides a comprehensive and up-to-date treatment of small area estimation, will become a classic...I believe that it has the potential to turn small area estimation...into a larger area of importance to both researchers and practitioners." —Journal of the American Statistical Association Written by two experts in the field, Small Area Estimation, Second Edition provides a comprehensive and up-to-date account of the methods and theory of small area estimation (SAE), particularly indirect estimation based on explicit small area linking models. The model-based approach to small area estimation offers several advantages including increased precision, the derivation of "optimal" estimates and associated measures of variability under an assumed model, and the validation of models from the sample data. Emphasizing real data throughout, the Second Edition maintains a self-contained account of crucial theoretical and methodological developments in the field of SAE. The new edition provides extensive accounts of new and updated research, which often involves complex theory to handle model misspecifications and other complexities. Including information on survey design issues and traditional methods employing indirect estimates based on implicit linking models, Small Area Estimation, Second Edition also features: Additional sections describing the use of R code data sets for readers to use when replicating applications Numerous examples of SAE applications throughout each chapter, including recent applications in U.S. Federal programs New topical coverage on extended design issues, synthetic estimation, further refinements and solutions to the Fay-Herriot area level model, basic unit level models, and spatial and time series models A discussion of the advantages and limitations of various SAE methods for model selection from data as well as comparisons of estimates derived from models to reliable values obtained from external sources, such as previous census or administrative data Small Area Estimation, Second Edition is an excellent reference for practicing statisticians and survey methodologists as well as practitioners interested in learning SAE methods. The Second Edition is also an ideal textbook for graduate-level courses in SAE and reliable small area statistics.


Subnational Population Estimates

Subnational Population Estimates

Author: David A. Swanson

Publisher: Springer Science & Business Media

Published: 2012-05-23

Total Pages: 420

ISBN-13: 9048189543

DOWNLOAD EBOOK

Providing a unified and comprehensive treatment of the theory and techniques of sub-national population estimation, this much-needed publication does more than collate disparate source material. It examines hitherto unexplored methodological links between differing types of estimation from both the demographic and sample-survey traditions and is a self-contained primer that combines academic rigor with a wealth of real-world examples that are useful models for demographers. Between censuses, which are expensive, administratively complex, and thus infrequent, demographers and government officials must estimate population using either demographic modeling techniques or statistical surveys that sample a fraction of residents. These estimates play a central role in vital decisions that range from funding allocations and rate-setting to education, health and housing provision. They also provide important data to companies undertaking market research. However, mastering small-area and sub-national population estimation is complicated by scattered, incomplete and outdated academic sources—an issue this volume tackles head-on. Rapidly increasing population mobility is making inter-census estimation ever more important to strategic planners. This book will make the theory and techniques involved more accessible to anyone with an interest in developing or using population estimates.