The Metabolism of Arsenite

The Metabolism of Arsenite

Author: Joanne M. Santini

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 203

ISBN-13: 1136319549

DOWNLOAD EBOOK

Up to 200 million people in 70 countries are at risk from drinking water contaminated with arsenic, which is a major cause of chronic debilitating illnesses and fatal cancers. Until recently little was known about the mobility of arsenic, and how redox transformations determined its movement into or out of water supplies. Although human activities contribute to the release of arsenic from minerals, it is now clear that bacteria are responsible for most of the redox transformation of arsenic in the environment. Bacterial oxidation of arsenite (to the less mobile arsenate) has been known since 1918, but it was not until 2000 that a bacterium was shown to gain energy from this process. Since then a wide range of arsenite-oxidizing bacteria have been isolated, including aerobes and anaerobes; heterotrophs and autotrophs; thermophiles, mesophiles and psychrophiles. This book reviews recent advances in the study of such bacteria. After a section on background—geology and health issues—the main body of the book concerns the cellular machinery of arsenite oxidation. It concludes by examining possible applications. Topics treated are: The geology and cycling of arsenic Arsenic and disease Arsenite oxidation: physiology, enzymes, genes, and gene regulation. Community genomics and functioning, and the evolution of arsenite oxidation Microbial arsenite oxidation in bioremediation Biosensors for arsenic in drinking water and industrial effluents


Arsenic

Arsenic

Author: Robert Bowell

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2014-11-21

Total Pages: 668

ISBN-13: 1614517975

DOWNLOAD EBOOK

Environmental Mineralogy and Bio-Geochemistry of Arsenic provides a comprehensive understanding of arsenic geochemistry in the near-surface environment. Topics covered include the mineralogy, thermodynamics, geochemistry, analysis, microbiology, and bioavailability of arsenic, with emphasis on implications for arsenic toxicity, geochemistry in natural ground waters, and mine-associated impacts and possible mitigation options. This volume is useful for those seeking to understand arsenic geochemistry and biological interactions in the near-surface environment, Clay Minerals does not use an online manuscript tracking/submission system. as well those working for mining companies, the chemicals industry, NGO’s or government bodies concerned with reducing the impact of arsenic on the environment.