Web scraping is the process of extracting information from the web using various tools that perform scraping and crawling. Go is emerging as the language of choice for scraping using a variety of libraries. This book will quickly explain to you, how to scrape data data from various websites using Go libraries such as Colly and Goquery.
Web Scraping techniques are getting more popular, since data is as valuable as oil in 21st century. Through this book get some key knowledge about using XPath, regEX; web scraping libraries for R like rvest and RSelenium technologies. Key FeaturesTechniques, tools and frameworks for web scraping with RScrape data effortlessly from a variety of websites Learn how to selectively choose the data to scrape, and build your datasetBook Description Web scraping is a technique to extract data from websites. It simulates the behavior of a website user to turn the website itself into a web service to retrieve or introduce new data. This book gives you all you need to get started with scraping web pages using R programming. You will learn about the rules of RegEx and Xpath, key components for scraping website data. We will show you web scraping techniques, methodologies, and frameworks. With this book's guidance, you will become comfortable with the tools to write and test RegEx and XPath rules. We will focus on examples of dynamic websites for scraping data and how to implement the techniques learned. You will learn how to collect URLs and then create XPath rules for your first web scraping script using rvest library. From the data you collect, you will be able to calculate the statistics and create R plots to visualize them. Finally, you will discover how to use Selenium drivers with R for more sophisticated scraping. You will create AWS instances and use R to connect a PostgreSQL database hosted on AWS. By the end of the book, you will be sufficiently confident to create end-to-end web scraping systems using R. What you will learnWrite and create regEX rulesWrite XPath rules to query your dataLearn how web scraping methods workUse rvest to crawl web pagesStore data retrieved from the webLearn the key uses of Rselenium to scrape dataWho this book is for This book is for R programmers who want to get started quickly with web scraping, as well as data analysts who want to learn scraping using R. Basic knowledge of R is all you need to get started with this book.
BRIDGE THE GAP BETWEEN NOVICE AND PROFESSIONAL You've completed a basic Python programming tutorial or finished Al Sweigart's bestseller, Automate the Boring Stuff with Python. What's the next step toward becoming a capable, confident software developer? Welcome to Beyond the Basic Stuff with Python. More than a mere collection of advanced syntax and masterful tips for writing clean code, you'll learn how to advance your Python programming skills by using the command line and other professional tools like code formatters, type checkers, linters, and version control. Sweigart takes you through best practices for setting up your development environment, naming variables, and improving readability, then tackles documentation, organization and performance measurement, as well as object-oriented design and the Big-O algorithm analysis commonly used in coding interviews. The skills you learn will boost your ability to program--not just in Python but in any language. You'll learn: Coding style, and how to use Python's Black auto-formatting tool for cleaner code Common sources of bugs, and how to detect them with static analyzers How to structure the files in your code projects with the Cookiecutter template tool Functional programming techniques like lambda and higher-order functions How to profile the speed of your code with Python's built-in timeit and cProfile modules The computer science behind Big-O algorithm analysis How to make your comments and docstrings informative, and how often to write them How to create classes in object-oriented programming, and why they're used to organize code Toward the end of the book you'll read a detailed source-code breakdown of two classic command-line games, the Tower of Hanoi (a logic puzzle) and Four-in-a-Row (a two-player tile-dropping game), and a breakdown of how their code follows the book's best practices. You'll test your skills by implementing the program yourself. Of course, no single book can make you a professional software developer. But Beyond the Basic Stuff with Python will get you further down that path and make you a better programmer, as you learn to write readable code that's easy to debug and perfectly Pythonic Requirements: Covers Python 3.6 and higher
Learn web scraping and crawling techniques to access unlimited data from any web source in any format. With this practical guide, you’ll learn how to use Python scripts and web APIs to gather and process data from thousands—or even millions—of web pages at once. Ideal for programmers, security professionals, and web administrators familiar with Python, this book not only teaches basic web scraping mechanics, but also delves into more advanced topics, such as analyzing raw data or using scrapers for frontend website testing. Code samples are available to help you understand the concepts in practice. Learn how to parse complicated HTML pages Traverse multiple pages and sites Get a general overview of APIs and how they work Learn several methods for storing the data you scrape Download, read, and extract data from documents Use tools and techniques to clean badly formatted data Read and write natural languages Crawl through forms and logins Understand how to scrape JavaScript Learn image processing and text recognition
A hands on guide to web scraping and text mining for both beginners and experienced users of R Introduces fundamental concepts of the main architecture of the web and databases and covers HTTP, HTML, XML, JSON, SQL. Provides basic techniques to query web documents and data sets (XPath and regular expressions). An extensive set of exercises are presented to guide the reader through each technique. Explores both supervised and unsupervised techniques as well as advanced techniques such as data scraping and text management. Case studies are featured throughout along with examples for each technique presented. R code and solutions to exercises featured in the book are provided on a supporting website.
The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.
This book provides a complete and modern guide to web scraping, using Python as the programming language, without glossing over important details or best practices. Written with a data science audience in mind, the book explores both scraping and the larger context of web technologies in which it operates, to ensure full understanding. The authors recommend web scraping as a powerful tool for any data scientist’s arsenal, as many data science projects start by obtaining an appropriate data set. Starting with a brief overview on scraping and real-life use cases, the authors explore the core concepts of HTTP, HTML, and CSS to provide a solid foundation. Along with a quick Python primer, they cover Selenium for JavaScript-heavy sites, and web crawling in detail. The book finishes with a recap of best practices and a collection of examples that bring together everything you've learned and illustrate various data science use cases. What You'll Learn Leverage well-established best practices and commonly-used Python packages Handle today's web, including JavaScript, cookies, and common web scraping mitigation techniques Understand the managerial and legal concerns regarding web scraping Who This Book is For A data science oriented audience that is probably already familiar with Python or another programming language or analytical toolkit (R, SAS, SPSS, etc). Students or instructors in university courses may also benefit. Readers unfamiliar with Python will appreciate a quick Python primer in chapter 1 to catch up with the basics and provide pointers to other guides as well.
Successfully scrape data from any website with the power of Python 3.x About This Book A hands-on guide to web scraping using Python with solutions to real-world problems Create a number of different web scrapers in Python to extract information This book includes practical examples on using the popular and well-maintained libraries in Python for your web scraping needs Who This Book Is For This book is aimed at developers who want to use web scraping for legitimate purposes. Prior programming experience with Python would be useful but not essential. Anyone with general knowledge of programming languages should be able to pick up the book and understand the principals involved. What You Will Learn Extract data from web pages with simple Python programming Build a concurrent crawler to process web pages in parallel Follow links to crawl a website Extract features from the HTML Cache downloaded HTML for reuse Compare concurrent models to determine the fastest crawler Find out how to parse JavaScript-dependent websites Interact with forms and sessions In Detail The Internet contains the most useful set of data ever assembled, most of which is publicly accessible for free. However, this data is not easily usable. It is embedded within the structure and style of websites and needs to be carefully extracted. Web scraping is becoming increasingly useful as a means to gather and make sense of the wealth of information available online. This book is the ultimate guide to using the latest features of Python 3.x to scrape data from websites. In the early chapters, you'll see how to extract data from static web pages. You'll learn to use caching with databases and files to save time and manage the load on servers. After covering the basics, you'll get hands-on practice building a more sophisticated crawler using browsers, crawlers, and concurrent scrapers. You'll determine when and how to scrape data from a JavaScript-dependent website using PyQt and Selenium. You'll get a better understanding of how to submit forms on complex websites protected by CAPTCHA. You'll find out how to automate these actions with Python packages such as mechanize. You'll also learn how to create class-based scrapers with Scrapy libraries and implement your learning on real websites. By the end of the book, you will have explored testing websites with scrapers, remote scraping, best practices, working with images, and many other relevant topics. Style and approach This hands-on guide is full of real-life examples and solutions starting simple and then progressively becoming more complex. Each chapter in this book introduces a problem and then provides one or more possible solutions.
Successfully scrape data from any website with the power of Python About This Book A hands-on guide to web scraping with real-life problems and solutions Techniques to download and extract data from complex websites Create a number of different web scrapers to extract information Who This Book Is For This book is aimed at developers who want to use web scraping for legitimate purposes. Prior programming experience with Python would be useful but not essential. Anyone with general knowledge of programming languages should be able to pick up the book and understand the principals involved. What You Will Learn Extract data from web pages with simple Python programming Build a threaded crawler to process web pages in parallel Follow links to crawl a website Download cache to reduce bandwidth Use multiple threads and processes to scrape faster Learn how to parse JavaScript-dependent websites Interact with forms and sessions Solve CAPTCHAs on protected web pages Discover how to track the state of a crawl In Detail The Internet contains the most useful set of data ever assembled, largely publicly accessible for free. However, this data is not easily reusable. It is embedded within the structure and style of websites and needs to be carefully extracted to be useful. Web scraping is becoming increasingly useful as a means to easily gather and make sense of the plethora of information available online. Using a simple language like Python, you can crawl the information out of complex websites using simple programming. This book is the ultimate guide to using Python to scrape data from websites. In the early chapters it covers how to extract data from static web pages and how to use caching to manage the load on servers. After the basics we'll get our hands dirty with building a more sophisticated crawler with threads and more advanced topics. Learn step-by-step how to use Ajax URLs, employ the Firebug extension for monitoring, and indirectly scrape data. Discover more scraping nitty-gritties such as using the browser renderer, managing cookies, how to submit forms to extract data from complex websites protected by CAPTCHA, and so on. The book wraps up with how to create high-level scrapers with Scrapy libraries and implement what has been learned to real websites. Style and approach This book is a hands-on guide with real-life examples and solutions starting simple and then progressively becoming more complex. Each chapter in this book introduces a problem and then provides one or more possible solutions.
This book is a practical, hands-on guide that takes you through the techniques of web scraping using Beautiful Soup. Getting Started with Beautiful Soup is great for anybody who is interested in website scraping and extracting information. However, a basic knowledge of Python, HTML tags, and CSS is required for better understanding.