In a giant step toward managing today's pollution problems more effectively, this report lays out a framework to coordinate an interdisciplinary and international investigation of the chemical composition and cycles of the troposphere. The approach includes geographical surveys, field measurements, the development of appropriate models, and improved instrumentation.
Here is the most comprehensive and up-to-date treatment of one of the hottest areas of chemical research. The treatment of fundamental kinetics and photochemistry will be highly useful to chemistry students and their instructors at the graduate level, as well as postdoctoral fellows entering this new, exciting, and well-funded field with a Ph.D. in a related discipline (e.g., analytical, organic, or physical chemistry, chemical physics, etc.). Chemistry of the Upper and Lower Atmosphere provides postgraduate researchers and teachers with a uniquely detailed, comprehensive, and authoritative resource. The text bridges the "gap" between the fundamental chemistry of the earth's atmosphere and "real world" examples of its application to the development of sound scientific risk assessments and associated risk management control strategies for both tropospheric and stratospheric pollutants. - Serves as a graduate textbook and "must have" reference for all atmospheric scientists - Provides more than 5000 references to the literature through the end of 1998 - Presents tables of new actinic flux data for the troposphere and stratospher (0-40km) - Summarizes kinetic and photochemical date for the troposphere and stratosphere - Features problems at the end of most chapters to enhance the book's use in teaching - Includes applications of the OZIPR box model with comprehensive chemistry for student use
Atmospheric Chemistry and Global Change presents an integrated examination of chemical processes in the atmosphere, focusing on global-scale problems and their role in the evolution of the Earth system. Taking a largely interdisciplinary approach, it features the collective efforts of a group of scientists at the National Center for Atmospheric Research (NCAR), as well as other experts from several universities and national laboratories. Topics discussed include the fundamental physical, chemical, and biological processes that affect the atmospheric composition; the chemical mechanisms that affect the production and the fate of important chemical compounds; and the techniques used to investigate the chemical processes in the atmosphere. The book concludes with discussions on global problems related to the atmosphere (stratospheric ozone depletion, changes in greenhouse gases, and global chemical pollution), the relationship between the atmosphere and the global climate, and the long-term chemical evolution of the atmosphere. Each chapter features a brief essay by a leader in the field and includes a large number of current references. Ideal for graduate courses in atmospheric chemistry and atmospheric science, Atmospheric Chemistry and Global Change also serves as an authoritative and practical reference for scientists studying the Earth's atmosphere. Support materials for the book are available via the website http: //acd.ucar.edu/textbook
Mathematical modeling of atmospheric composition is a formidable scientific and computational challenge. This comprehensive presentation of the modeling methods used in atmospheric chemistry focuses on both theory and practice, from the fundamental principles behind models, through to their applications in interpreting observations. An encyclopaedic coverage of methods used in atmospheric modeling, including their advantages and disadvantages, makes this a one-stop resource with a large scope. Particular emphasis is given to the mathematical formulation of chemical, radiative, and aerosol processes; advection and turbulent transport; emission and deposition processes; as well as major chapters on model evaluation and inverse modeling. The modeling of atmospheric chemistry is an intrinsically interdisciplinary endeavour, bringing together meteorology, radiative transfer, physical chemistry and biogeochemistry, making the book of value to a broad readership. Introductory chapters and a review of the relevant mathematics make this book instantly accessible to graduate students and researchers in the atmospheric sciences.
Atmospheric chemistry is one of the fastest growing fields in the earth sciences. Until now, however, there has been no book designed to help students capture the essence of the subject in a brief course of study. Daniel Jacob, a leading researcher and teacher in the field, addresses that problem by presenting the first textbook on atmospheric chemistry for a one-semester course. Based on the approach he developed in his class at Harvard, Jacob introduces students in clear and concise chapters to the fundamentals as well as the latest ideas and findings in the field. Jacob's aim is to show students how to use basic principles of physics and chemistry to describe a complex system such as the atmosphere. He also seeks to give students an overview of the current state of research and the work that led to this point. Jacob begins with atmospheric structure, design of simple models, atmospheric transport, and the continuity equation, and continues with geochemical cycles, the greenhouse effect, aerosols, stratospheric ozone, the oxidizing power of the atmosphere, smog, and acid rain. Each chapter concludes with a problem set based on recent scientific literature. This is a novel approach to problem-set writing, and one that successfully introduces students to the prevailing issues. This is a major contribution to a growing area of study and will be welcomed enthusiastically by students and teachers alike.
Understanding the composition and chemistry of the Earth's atmosphere is essential to global ecological and environmental policy making and research. Atmospheric changes as a result of both natural and anthropogenic activity have affected many of the Earth's natural systems throughout history, some more seriously than others, and such changes are ever more evident with increases in both global warming and extreme weather events. Atmospheric Chemistry considers in detail the physics and chemistry of our atmosphere, that gives rise to our weather systems and climate, soaks up our pollutants and protects us from solar UV radiation.The development of the complex chemistry occurring on Earth can be explained through application of basic principles of physical chemistry, as is discussed in this book. It is therefore accessible to intermediate and advanced undergraduates of chemistry, with an interdisciplinary approach relevant to meteorologists, oceanographers, and climatologists. It also provides an ideal opportunity to bring together many different aspects of physical chemistry and demonstrate their relevance to the world we live in.This book was written in conjunction with Astrochemistry: From the Big Bang to the Present Day, Claire Vallance (2017) World Scientific Publishing.
Our world is changing at an accelerating rate. The global human population has grown from 6.1 billion to 7.1 billion in the last 15 years and is projected to reach 11.2 billion by the end of the century. The distribution of humans across the globe has also shifted, with more than 50 percent of the global population now living in urban areas, compared to 29 percent in 1950. Along with these trends, increasing energy demands, expanding industrial activities, and intensification of agricultural activities worldwide have in turn led to changes in emissions that have altered the composition of the atmosphere. These changes have led to major challenges for society, including deleterious impacts on climate, human and ecosystem health. Climate change is one of the greatest environmental challenges facing society today. Air pollution is a major threat to human health, as one out of eight deaths globally is caused by air pollution. And, future food production and global food security are vulnerable to both global change and air pollution. Atmospheric chemistry research is a key part of understanding and responding to these challenges. The Future of Atmospheric Chemistry Research: Remembering Yesterday, Understanding Today, Anticipating Tomorrow summarizes the rationale and need for supporting a comprehensive U.S. research program in atmospheric chemistry; comments on the broad trends in laboratory, field, satellite, and modeling studies of atmospheric chemistry; determines the priority areas of research for advancing the basic science of atmospheric chemistry; and identifies the highest priority needs for improvements in the research infrastructure to address those priority research topics. This report describes the scientific advances over the past decade in six core areas of atmospheric chemistry: emissions, chemical transformation, oxidants, atmospheric dynamics and circulation, aerosol particles and clouds, and biogeochemical cycles and deposition. This material was developed for the NSF's Atmospheric Chemistry Program; however, the findings will be of interest to other agencies and programs that support atmospheric chemistry research.
Atmospheric chemistry is central to understanding global changes ? ozone depletion, appearance of the polar ozone holes, and compositional changes which worsen the greenhouse effect. Because of its importance, work is progressing on many fronts.This volume emphasizes the troposhere and stratosphere and has chapters on gas phase, condensed phase, and heterogeneous chemistry. Present progress is emphasized, and important future directions are also described.This book fills a need not satisfied by any others and will be popular for some years to come. It informs students and newcomers to the field of the many facets of atmospheric chemistry and can be used as a text for advanced students. It is also a valuable desk reference summarizing activities by quite a number of the most active research groups.Chapter 18 by Kolb et al. on heterogeneous chemistry is especially noteworthy because it represents a unique joint effort by several groups working on a very timely subject; they describe a conceptual framework and establish conventions which will be standard in future papers on this subject.
Thoroughly restructured and updated with new findings and new features The Second Edition of this internationally acclaimed text presents the latest developments in atmospheric science. It continues to be the premier text for both a rigorous and a complete treatment of the chemistry of the atmosphere, covering such pivotal topics as: * Chemistry of the stratosphere and troposphere * Formation, growth, dynamics, and properties of aerosols * Meteorology of air pollution * Transport, diffusion, and removal of species in the atmosphere * Formation and chemistry of clouds * Interaction of atmospheric chemistry and climate * Radiative and climatic effects of gases and particles * Formulation of mathematical chemical/transport models of the atmosphere All chapters develop results based on fundamental principles, enabling the reader to build a solid understanding of the science underlying atmospheric processes. Among the new material are three new chapters: Atmospheric Radiation and Photochemistry, General Circulation of the Atmosphere, and Global Cycles. In addition, the chapters Stratospheric Chemistry, Tropospheric Chemistry, and Organic Atmospheric Aerosols have been rewritten to reflect the latest findings. Readers familiar with the First Edition will discover a text with new structures and new features that greatly aid learning. Many examples are set off in the text to help readers work through the application of concepts. Advanced material has been moved to appendices. Finally, many new problems, coded by degree of difficulty, have been added. A solutions manual is available. Thoroughly updated and restructured, the Second Edition of Atmospheric Chemistry and Physics is an ideal textbook for upper-level undergraduate and graduate students, as well as a reference for researchers in environmental engineering, meteorology, chemistry, and the atmospheric sciences. Click here to Download the Solutions Manual for Academic Adopters: http://www.wiley.com/WileyCDA/Section/id-292291.html
Knowledge of thc chemical behavior of trace compounds in the atmosphere has grown steadily, and sometimes even spectacularly, in recent decades. These developments have led to the emergence of atmospheric chemistry as a new branch of science. This book covers all aspects of atmospheric chemistry on a global scale, integrating information from chemistry and geochemistry, physics, and biology to provide a unified account. For each atmospheric constituent of interest, the text summarizes the principal observations on global distribution, chemical reactions, natural and anthropogenic sources, and physical removal processes. Coverage includes processes in the gas phase, in aerosols and c1ouds, and in precipitation, as well as biogeochemical cycles and the evolution of the atmosphere. Chemistry of the Natural Atmosphere, Second Edition, will serve as a textbook for senior undergraduate and graduate courses, and as an essential reference for atmospheric chemists, meteorologists, and anyone studying the biogeochemical cycles of trace gases.* Updated extensively from the highly respected first edition * Treats the global-scale chemistry and distribution of atmospheric trace constituents * Emphasizes observations and their interpretation* Provides background on transport and reaction kinetics for interpretation of observational data* Includes chemistry in the gas phase and in aerosols and clouds* Details chemical reaction pathways for the most important trace constituents* Describes pertinent biogeochemical cycles* Written by an author with more than 40 years of research experience in atmospheric chemistry