Global Theory of Dynamical Systems
Author: Zbigniew Nitecki
Publisher: Lecture Notes in Mathematics
Published: 1980-08
Total Pages: 520
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Zbigniew Nitecki
Publisher: Lecture Notes in Mathematics
Published: 1980-08
Total Pages: 520
ISBN-13:
DOWNLOAD EBOOKAuthor: Z. Nitecki
Publisher: Springer
Published: 2006-11-14
Total Pages: 508
ISBN-13: 3540383123
DOWNLOAD EBOOKAuthor: Michael Shub
Publisher: Springer
Published: 2010-12-05
Total Pages: 150
ISBN-13: 9781441930798
DOWNLOAD EBOOKThese notes are the result of a course in dynamical systems given at Orsay during the 1976-77 academic year. I had given a similar course at the Gradu ate Center of the City University of New York the previous year and came to France equipped with the class notes of two of my students there, Carol Hurwitz and Michael Maller. My goal was to present Smale's n-Stability Theorem as completely and compactly as possible and in such a way that the students would have easy access to the literature. I was not confident that I could do all this in lectures in French, so I decided to distribute lecture notes. I wrote these notes in English and Remi Langevin translated them into French. His work involved much more than translation. He consistently corrected for style, clarity, and accuracy. Albert Fathi got involved in reading the manuscript. His role quickly expanded to extensive rewriting and writing. Fathi wrote (5. 1) and (5. 2) and rewrote Theorem 7. 8 when I was in despair of ever getting it right with all the details. He kept me honest at all points and played a large role in the final form of the manuscript. He also did the main work in getting the manuscript ready when I had left France and Langevin was unfortunately unavailable. I ran out of steam by the time it came to Chapter 10. M.
Author: Anatole Katok
Publisher: Cambridge University Press
Published: 1995
Total Pages: 828
ISBN-13: 9780521575577
DOWNLOAD EBOOKThis book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.
Author:
Publisher: World Scientific
Published: 2009
Total Pages: 444
ISBN-13: 9814282251
DOWNLOAD EBOOK"This is an introductory textbook on the geometrical theory of dynamical systems, fluid flows and certain integrable systems. The topics are interdisciplinary and extend from mathematics, mechanics and physics to mechanical engineering, and the approach is very fundamental. The main theme of this book is a unified formulation to understand dynamical evolutions of physical systems within mathematical ideas of Riemannian geometry and Lie groups by using well-known examples. Underlying mathematical concepts include transformation invariance, covariant derivative, geodesic equation and curvature tensors on the basis of differential geometry, theory of Lie groups and integrability. These mathematical theories are applied to physical systems such as free rotation of a top, surface wave of shallow water, action principle in mechanics, diffeomorphic flow of fluids, vortex motions and some integrable systems. In the latest edition, a new formulation of fluid flows is also presented in a unified fashion on the basis of the gauge principle of theoretical physics and principle of least action along with new type of Lagrangians. A great deal of effort has been directed toward making the description elementary, clear and concise, to provide beginners easy access to the topics."-
Author: Maoan Han
Publisher: World Scientific
Published: 1997-11-29
Total Pages: 476
ISBN-13: 9814501093
DOWNLOAD EBOOKDynamical bifurcation theory is concerned with the changes that occur in the global structure of dynamical systems as parameters are varied. This book makes recent research in bifurcation theory of dynamical systems accessible to researchers interested in this subject. In particular, the relevant results obtained by Chinese mathematicians are introduced as well as some of the works of the authors which may not be widely known. The focus is on the analytic approach to the theory and methods of bifurcations. The book prepares graduate students for further study in this area, and it serves as a ready reference for researchers in nonlinear sciences and applied mathematics.
Author: James C. Robinson
Publisher: Cambridge University Press
Published: 2001-04-23
Total Pages: 488
ISBN-13: 9780521632041
DOWNLOAD EBOOKThis book treats the theory of global attractors, a recent development in the theory of partial differential equations, in a way that also includes much of the traditional elements of the subject. As such it gives a quick but directed introduction to some fundamental concepts, and by the end proceeds to current research problems. Since the subject is relatively new, this is the first book to attempt to treat these various topics in a unified and didactic way. It is intended to be suitable for first year graduate students.
Author: Morris W. Hirsch
Publisher: Academic Press
Published: 2004
Total Pages: 433
ISBN-13: 0123497035
DOWNLOAD EBOOKThirty years in the making, this revised text by three of the world's leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra. The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of.
Author: H.W Broer
Publisher: CRC Press
Published: 2001-06-18
Total Pages: 498
ISBN-13: 9781420034288
DOWNLOAD EBOOKContributed by close colleagues, friends, and former students of Floris Takens, Global Analysis of Dynamical Systems is a liber amicorum dedicated to Takens for his 60th birthday. The first chapter is a reproduction of Takens's 1974 paper "Forced oscillators and bifurcations" that was previously available only as a preprint of the University of Utrecht. Among other important results, it contains the unfolding of what is now known as the Bogdanov-Takens bifurcation. The remaining chapters cover topics as diverse as bifurcation theory, Hamiltonian mechanics, homoclinic bifurcations, routes to chaos, ergodic theory, renormalization theory, and time series analysis. In its entirety, the book bears witness to the influence of Takens on the modern theory of dynamical systems and its applications. This book is a must-read for anyone interested in this active and exciting field.
Author: A. Blaquiere
Publisher: Springer
Published: 2014-05-04
Total Pages: 405
ISBN-13: 3709143306
DOWNLOAD EBOOK