Global health is a rapidly emerging discipline with a transformative potential for public policy and international development. Emphasizing transnational health issues, global health aims to improve health and achieve health equity for all people worldwide. Its multidisciplinary scope includes contributions from many disciplines within and beyond the health sciences, including clinical medicine, public health, social and behavioral sciences, environmental sciences, economics, public policy, law and ethics. This large reference offers up-to-date information and expertise across all aspects of global health and helps readers to achieve a truly multidisciplinary understanding of the topics, trends as well as the clinical, socioeconomic and environmental drivers impacting global health. As a fully comprehensive, state-of-the-art and continuously updated, living reference, the Handbook of Global Health is an important, dynamic resource to provide context for global health clinical care, organizational decision-making, and overall public policy on many levels. Health workers, physicians, economists, environmental and social scientists, trainees and medical students as well as professionals and practitioners will find this handbook of great value.
The new 2030 Agenda for Sustainable Development includes water, sanitation, and hygiene (WASH) at its core. A dedicated Sustainable Development Goal (SDG 6) declares a commitment to "ensure availability and sustainable management of water and sanitation for all." Monitoring progress toward this goal will be challenging: direct measures of water and sanitation service quality and use are either expensive or elusive. However, reliance on household surveys poses limitations and likely overstated progress during the Millennium Development Goal period. In Innovations in WASH Impact Measures: Water and Sanitation Measurement Technologies and Practices to Inform the Sustainable Development Goals, we review the landscape of proven and emerging technologies, methods, and approaches that can support and improve on the WASH indicators proposed for SDG target 6.1, "by 2030, achieve universal and equitable access to safe and affordable drinking water for all," and target 6.2, "by 2030, achieve access to adequate and equitable sanitation and hygiene for all and end open defecation, paying special attention to the needs of women and girls and those in vulnerable situations." Although some of these technologies and methods are readily available, other promising approaches require further field evaluation and cost reductions. Emergent technologies, methods, and data-sharing platforms are increasingly aligned with program impact monitoring. Improved monitoring of water and sanitation interventions may allow more cost-effective and measurable results. In many cases, technologies and methods allow more complete and impartial data in time to allow program improvements. Of the myriad monitoring and evaluation methods, each has its own advantages and limitations. Surveys, ethnographies, and direct observation give context to more continuous and objective electronic sensor data. Overall, combined methodologies can provide a more comprehensive and instructive depiction of WASH usage and help the international development community measure our progress toward reaching the SDG WASH goals.
As the human population grows-tripling in the past century while, simultaneously, quadrupling its demand for water-Earth's finite freshwater supplies are increasingly strained, and also increasingly contaminated by domestic, agricultural, and industrial wastes. Today, approximately one-third of the world's population lives in areas with scarce water resources. Nearly one billion people currently lack access to an adequate water supply, and more than twice as many lack access to basic sanitation services. It is projected that by 2025 water scarcity will affect nearly two-thirds of all people on the planet. Recognizing that water availability, water quality, and sanitation are fundamental issues underlying infectious disease emergence and spread, the Institute of Medicine held a two-day public workshop, summarized in this volume. Through invited presentations and discussions, participants explored global and local connections between water, sanitation, and health; the spectrum of water-related disease transmission processes as they inform intervention design; lessons learned from water-related disease outbreaks; vulnerabilities in water and sanitation infrastructure in both industrialized and developing countries; and opportunities to improve water and sanitation infrastructure so as to reduce the risk of water-related infectious disease.
This volume describes the methods used in the surveillance of drinking water quality in the light of the special problems of small-community supplies, particularly in developing countries, and outlines the strategies necessary to ensure that surveillance is effective.
The WHO Guidelines on Hand Hygiene in Health Care provide health-care workers (HCWs), hospital administrators and health authorities with a thorough review of evidence on hand hygiene in health care and specific recommendations to improve practices and reduce transmission of pathogenic microorganisms to patients and HCWs. The present Guidelines are intended to be implemented in any situation in which health care is delivered either to a patient or to a specific group in a population. Therefore, this concept applies to all settings where health care is permanently or occasionally performed, such as home care by birth attendants. Definitions of health-care settings are proposed in Appendix 1. These Guidelines and the associated WHO Multimodal Hand Hygiene Improvement Strategy and an Implementation Toolkit (http://www.who.int/gpsc/en/) are designed to offer health-care facilities in Member States a conceptual framework and practical tools for the application of recommendations in practice at the bedside. While ensuring consistency with the Guidelines recommendations, individual adaptation according to local regulations, settings, needs, and resources is desirable. This extensive review includes in one document sufficient technical information to support training materials and help plan implementation strategies. The document comprises six parts.
Ensuring safe environmental health conditions in health care can reduce the transmission of health care-associated infections. This document provides guidelines on essential environmental health standards required for health care in medium- and low-resource countries and support the development and implementation of national policies.
This is the second edition of the WHO handbook on the safe, sustainable and affordable management of health-care waste--commonly known as "the Blue Book". The original Blue Book was a comprehensive publication used widely in health-care centers and government agencies to assist in the adoption of national guidance. It also provided support to committed medical directors and managers to make improvements and presented practical information on waste-management techniques for medical staff and waste workers. It has been more than ten years since the first edition of the Blue Book. During the intervening period, the requirements on generators of health-care wastes have evolved and new methods have become available. Consequently, WHO recognized that it was an appropriate time to update the original text. The purpose of the second edition is to expand and update the practical information in the original Blue Book. The new Blue Book is designed to continue to be a source of impartial health-care information and guidance on safe waste-management practices. The editors' intention has been to keep the best of the original publication and supplement it with the latest relevant information. The audience for the Blue Book has expanded. Initially, the publication was intended for those directly involved in the creation and handling of health-care wastes: medical staff, health-care facility directors, ancillary health workers, infection-control officers and waste workers. This is no longer the situation. A wider range of people and organizations now have an active interest in the safe management of health-care wastes: regulators, policy-makers, development organizations, voluntary groups, environmental bodies, environmental health practitioners, advisers, researchers and students. They should also find the new Blue Book of benefit to their activities. Chapters 2 and 3 explain the various types of waste produced from health-care facilities, their typical characteristics and the hazards these wastes pose to patients, staff and the general environment. Chapters 4 and 5 introduce the guiding regulatory principles for developing local or national approaches to tackling health-care waste management and transposing these into practical plans for regions and individual health-care facilities. Specific methods and technologies are described for waste minimization, segregation and treatment of health-care wastes in Chapters 6, 7 and 8. These chapters introduce the basic features of each technology and the operational and environmental characteristics required to be achieved, followed by information on the potential advantages and disadvantages of each system. To reflect concerns about the difficulties of handling health-care wastewaters, Chapter 9 is an expanded chapter with new guidance on the various sources of wastewater and wastewater treatment options for places not connected to central sewerage systems. Further chapters address issues on economics (Chapter 10), occupational safety (Chapter 11), hygiene and infection control (Chapter 12), and staff training and public awareness (Chapter 13). A wider range of information has been incorporated into this edition of the Blue Book, with the addition of two new chapters on health-care waste management in emergencies (Chapter 14) and an overview of the emerging issues of pandemics, drug-resistant pathogens, climate change and technology advances in medical techniques that will have to be accommodated by health-care waste systems in the future (Chapter 15).