Hybrid Finite Element Method for Stress Analysis of Laminated Composites

Hybrid Finite Element Method for Stress Analysis of Laminated Composites

Author: Suong Van Hoa

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 304

ISBN-13: 146155733X

DOWNLOAD EBOOK

This book has one single purpose: to present the development of the partial hybrid finite element method for the stress analysis of laminated composite structures. The reason for this presentation is because the authors believe that partial hybrid finite element method is more efficient that the displacement based finite element method for the stress analysis oflaminated composites. In fact, the examples in chapter 5 of this book show that the partial hybrid finite element method is about 5 times more efficient than the displacement based finite element method. Since there is a great need for accurate and efficient calculation of interlaminar stresses for the design using composites, the partial hybrid finite method does provide one possible solution. Hybrid finite method has been in existence since 1964 and a significant amount of work has been done on the topic. However, the authors are not aware of any systematic piece of literature that gives a detailed presentation of the method. Chapters of the displacement finite element method and the evolution 1 and 2 present a sununary of the hybrid finite element method. Hopefully, these two chapters can provide the readers with an appreciation for the difference between the displacement finite element method and the hybrid finite element. It also should prepare the readers for the introduction of partial hybrid finite element method presented in chapter 3.


Design and Analysis of Composite Structures

Design and Analysis of Composite Structures

Author: Christos Kassapoglou

Publisher: John Wiley & Sons

Published: 2011-07-05

Total Pages: 303

ISBN-13: 1119957060

DOWNLOAD EBOOK

Design and Analysis of Composite Structures enables graduate students and engineers to generate meaningful and robust designs of complex composite structures. Combining analysis and design methods for structural components, the book begins with simple topics such as skins and stiffeners and progresses through to entire components of fuselages and wings. Starting with basic mathematical derivation followed by simplifications used in real-world design, Design and Analysis of Composite Structures presents the level of accuracy and range of applicability of each method. Examples taken from actual applications are worked out in detail to show how the concepts are applied, solving the same design problem with different methods based on different drivers (e.g. cost or weight) to show how the final configuration changes as the requirements and approach change. Provides a toolkit of analysis and design methods to most situations encountered in practice, as well as analytical frameworks and the means to solving them for tackling less frequent problems. Presents solutions applicable to optimization schemes without having to run finite element models at each iteration, speeding up the design process and allowing examination of several more alternatives than traditional approaches. Includes guidelines showing how decisions based on manufacturing considerations affect weight and how weight optimization may adversely affect the cost. Accompanied by a website at www.wiley.com/go/kassapoglou hosting lecture slides and solutions to the exercises for instructors.


Finite Element Analysis of Composite Materials using AbaqusTM

Finite Element Analysis of Composite Materials using AbaqusTM

Author: Ever J. Barbero

Publisher: CRC Press

Published: 2013-04-18

Total Pages: 444

ISBN-13: 1466516631

DOWNLOAD EBOOK

Developed from the author's graduate-level course on advanced mechanics of composite materials, Finite Element Analysis of Composite Materials with Abaqus shows how powerful finite element tools address practical problems in the structural analysis of composites. Unlike other texts, this one takes the theory to a hands-on level by actually solving


Structural Composite Materials

Structural Composite Materials

Author: F. C. Campbell

Publisher: ASM International

Published: 2010-01-01

Total Pages: 622

ISBN-13: 1615031405

DOWNLOAD EBOOK

This book deals with all aspects of advanced composite materials; what they are, where they are used, how they are made, their properties, how they are designed and analyzed, and how they perform in-service. It covers both continuous and discontinuous fiber composites fabricated from polymer, metal, and ceramic matrices, with an emphasis on continuous fiber polymer matrix composites.


Local Effects in the Analysis of Structures

Local Effects in the Analysis of Structures

Author: P. Ladeveze

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 351

ISBN-13: 1483295443

DOWNLOAD EBOOK

The question of inclusion of local effects in the analysis of structures is currently one of prime importance for engineering design. The classical computational approaches are not readily adapted to take local effects into account and appropriate treatments are therefore necessary. Providing an introduction to and survey of the specific computational methods, this book contains 16 papers, most of which were presented at the EUROMECH Colloquium `Inclusion of Local Effects in the Analysis of Structures', held in France in 1984. The book begins with the various theories which allow the separation and determination of local and global effects. The next group of papers discuss edge effects for composite structures. The third part comprises two papers concerning dynamic problems and points the way towards non-conventional local effects in structural mechanics. The last part deals with general numerical methods, especially for effects due to large local variations of geometry.


3D Fibre Reinforced Polymer Composites

3D Fibre Reinforced Polymer Composites

Author: L. Tong

Publisher: Elsevier

Published: 2002-11-20

Total Pages: 255

ISBN-13: 0080525822

DOWNLOAD EBOOK

Fibre reinforced polymer (FRP) composites are used in almost every type of advanced engineering structure, with their usage ranging from aircraft, helicopters and spacecraft through to boats, ships and offshore platforms and to automobiles, sports goods, chemical processing equipment and civil infrastructure such as bridges and buildlings. The usage of FRP composites continues to grow at an impessive rate as these materials are used more in their existing markets and become established in relatively new markets such as biomedical devices and civil structures. A key factor driving the increased applications of composites over the recent years is the development of new advanced forms of FRP materials. This includes developments in high performance resin systems and new styles of reinforcement, such as carbon nanotubes and nanoparticles. This book provides an up-to-date account of the fabrication, mechanical properties, delamination resistance, impact tolerance and applications of 3D FRP composites. The book focuses on 3D composites made using the textile technologies of weaving, braiding, knitting and stiching as well as by z-pinning.


Development of Partial Hybrid Finite Elements for 3-D Global/local Analysis of Laminated Composite Structures

Development of Partial Hybrid Finite Elements for 3-D Global/local Analysis of Laminated Composite Structures

Author: Wei Feng

Publisher:

Published: 1998

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

The purpose of this work is to develop global/local finite element models using partial hybrid stress finite elements for stress analysis of laminated composite structures. Based on the composite variational principle, the general formulations of partial hybrid single-layer finite element and multilayer finite element are presented. These formulations can be used to develop a series of partial hybrid finite elements. A 4-node degenerated plate element, an 8-node degenerated plate element, a 3-D, 8-node solid element, a 3-D, 20-node solid element, a 6-node transition element, a 15-node transition element, a multilayer solid element, and a multilayer transition element are presented. The elements developed in this thesis are examined by the, eigenvalue test to detect zero-energy deformation modes and the absence of rigid-body motion capability. The results show that the elements do not have any kinematic deformation modes, and they have a desired capability for rigid-body displacement. In addition, the non-zero eigenvalues of the element stiffness matrices are real and positive. In order to determine the optimal partial stress fields for the partial hybrid elements, a classification method of stress modes is presented. The method can be used to classify stress modes, select optimal stress modes, and set up an assumed stress matrix for a hybrid element. Also, the necessary and sufficient condition for avoiding spurious kinematic deformation mode is proposed and the optimal condition of an assumed stress field is presented. A computer program COMSA is developed to implement the partial hybrid finite element method. The Global/Local finite element models are established using plate element, solid element, and transition element. In the thesis, a few numerical examples are presented to verify the accuracy and efficiency of the finite element models. It has been shown that the global/local models using partial hybrid element are efficient and accurate for stress analysis of laminated composites due to the fact that they take advantage of the capacity of both 3-D elements and 2-D elements.


Non-Crimp Fabric Composites

Non-Crimp Fabric Composites

Author: Stepan V Lomov

Publisher: Elsevier

Published: 2011-04-19

Total Pages: 557

ISBN-13: 0857092537

DOWNLOAD EBOOK

Non-crimp fabric (NCF) composites are reinforced with mats of straight (non-crimped) fibres, giving them such advantages as strength, ease of handling and low manufacturing costs. Non-crimp fabric composites provides a comprehensive review of the use of NCF composites, their manufacture and applications in engineering. Part one covers the manufacture of non-crimp fabrics, including also topics such as structural stitching and automated defect analysis. Part two goes on to discuss the manufacture of non-crimp fabric composites, with chapters covering such topics as deformability and permeability of NCF. Part three focuses on the properties of NCF composites, with chapters on stiffness and strength, damage progression and fatigue. Finally, part four covers the applications of NCF composites, including chapters on the aerospace and automotive industries as well as wind turbines and helicopter applications. The book concludes with a discussion of cost analysis of NCF composites in engineering applications. With its distinguished editor and international team of expert contributors, Non-crimp fabric composites is an essential reference for composite manufacturers and structural and mechanical engineers in industries using NCF composites, as well as academics with a research interest in the field. Provides a comprehensive review of the use of NCF composites, their manufacture and applications in engineering Reviews the manufacture of non-crimp fabrics, including also topics such as structural stitching and automated defect analysis Examines the properties of NCF composites considering stiffness and strength, damage progression and fatigue