Global Algorithms for Nonlinear Discrete Optimization and Discrete-valued Optimal Control Problems

Global Algorithms for Nonlinear Discrete Optimization and Discrete-valued Optimal Control Problems

Author: Siew Fang Woon

Publisher:

Published: 2009

Total Pages: 336

ISBN-13:

DOWNLOAD EBOOK

While the main aim of this thesis is to present a new computational methodfor solving discrete-valued optimal control problems, the initial focus is on solvingpurely discrete optimization problems. We identify several discrete filled functionstechniques in the literature and perform a critical review including comprehensive numerical tests. Once the best filled function method is identified, we propose and test several variations of the method with numerical examples.


Introduction to Applied Optimization

Introduction to Applied Optimization

Author: Urmila Diwekar

Publisher: Springer Science & Business Media

Published: 2008-12-03

Total Pages: 310

ISBN-13: 0387766359

DOWNLOAD EBOOK

Provides well-written self-contained chapters, including problem sets and exercises, making it ideal for the classroom setting; Introduces applied optimization to the hazardous waste blending problem; Explores linear programming, nonlinear programming, discrete optimization, global optimization, optimization under uncertainty, multi-objective optimization, optimal control and stochastic optimal control; Includes an extensive bibliography at the end of each chapter and an index; GAMS files of case studies for Chapters 2, 3, 4, 5, and 7 are linked to http://www.springer.com/math/book/978-0-387-76634-8; Solutions manual available upon adoptions.


Nonlinear Discrete Optimization

Nonlinear Discrete Optimization

Author: Shmuel Onn

Publisher: European Mathematical Society

Published: 2010

Total Pages: 0

ISBN-13: 9783037190937

DOWNLOAD EBOOK

This monograph develops an algorithmic theory of nonlinear discrete optimization. It introduces a simple and useful setup, which enables the polynomial time solution of broad fundamental classes of nonlinear combinatorial optimization and integer programming problems in variable dimension. An important part of this theory is enhanced by recent developments in the algebra of Graver bases. The power of the theory is demonstrated by deriving the first polynomial time algorithms in a variety of application areas within operations research and statistics, including vector partitioning, matroid optimization, experimental design, multicommodity flows, multi-index transportation and privacy in statistical databases. This monograph is intended for graduate students and researchers. It is accessible to anyone with standard undergraduate knowledge and mathematical maturity.


Nonlinear Model Predictive Control

Nonlinear Model Predictive Control

Author: Lars Grüne

Publisher: Springer

Published: 2016-11-09

Total Pages: 463

ISBN-13: 3319460242

DOWNLOAD EBOOK

This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. The second edition has been substantially rewritten, edited and updated to reflect the significant advances that have been made since the publication of its predecessor, including: • a new chapter on economic NMPC relaxing the assumption that the running cost penalizes the distance to a pre-defined equilibrium; • a new chapter on distributed NMPC discussing methods which facilitate the control of large-scale systems by splitting up the optimization into smaller subproblems; • an extended discussion of stability and performance using approximate updates rather than full optimization; • replacement of the pivotal sufficient condition for stability without stabilizing terminal conditions with a weaker alternative and inclusion of an alternative and much simpler proof in the analysis; and • further variations and extensions in response to suggestions from readers of the first edition. Though primarily aimed at academic researchers and practitioners working in control and optimization, the text is self-contained, featuring background material on infinite-horizon optimal control and Lyapunov stability theory that also makes it accessible for graduate students in control engineering and applied mathematics.


Adaptive Dynamic Programming for Control

Adaptive Dynamic Programming for Control

Author: Huaguang Zhang

Publisher: Springer Science & Business Media

Published: 2012-12-14

Total Pages: 432

ISBN-13: 144714757X

DOWNLOAD EBOOK

There are many methods of stable controller design for nonlinear systems. In seeking to go beyond the minimum requirement of stability, Adaptive Dynamic Programming in Discrete Time approaches the challenging topic of optimal control for nonlinear systems using the tools of adaptive dynamic programming (ADP). The range of systems treated is extensive; affine, switched, singularly perturbed and time-delay nonlinear systems are discussed as are the uses of neural networks and techniques of value and policy iteration. The text features three main aspects of ADP in which the methods proposed for stabilization and for tracking and games benefit from the incorporation of optimal control methods: • infinite-horizon control for which the difficulty of solving partial differential Hamilton–Jacobi–Bellman equations directly is overcome, and proof provided that the iterative value function updating sequence converges to the infimum of all the value functions obtained by admissible control law sequences; • finite-horizon control, implemented in discrete-time nonlinear systems showing the reader how to obtain suboptimal control solutions within a fixed number of control steps and with results more easily applied in real systems than those usually gained from infinite-horizon control; • nonlinear games for which a pair of mixed optimal policies are derived for solving games both when the saddle point does not exist, and, when it does, avoiding the existence conditions of the saddle point. Non-zero-sum games are studied in the context of a single network scheme in which policies are obtained guaranteeing system stability and minimizing the individual performance function yielding a Nash equilibrium. In order to make the coverage suitable for the student as well as for the expert reader, Adaptive Dynamic Programming in Discrete Time: • establishes the fundamental theory involved clearly with each chapter devoted to a clearly identifiable control paradigm; • demonstrates convergence proofs of the ADP algorithms to deepen understanding of the derivation of stability and convergence with the iterative computational methods used; and • shows how ADP methods can be put to use both in simulation and in real applications. This text will be of considerable interest to researchers interested in optimal control and its applications in operations research, applied mathematics computational intelligence and engineering. Graduate students working in control and operations research will also find the ideas presented here to be a source of powerful methods for furthering their study.


Progress in Optimization

Progress in Optimization

Author: Xiaoqi Yang

Publisher: Springer Science & Business Media

Published: 2000-04-30

Total Pages: 376

ISBN-13: 9780792362869

DOWNLOAD EBOOK

This is the second in a series of contributed, refereed volumes devoted to research in optimization by Australian researchers and their collaborators. These volumes are intended to have wide scope and include survey papers by established researchers providing up-to-date information on research directions. This volume includes survey and research papers on theories and methods of nonlinear programming, nonconvex and discrete optimization, stochastic linear programming, generalized convexity, complementarity and vector variational inequality problems, dynamic systems and optimal control and applications to traffic assignment models, train control, manufacturing systems and substrate diffusion of cutaneous tissue. Audience: Practitioners, postgraduate students and researchers in optimization.


Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming

Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming

Author: Mohit Tawarmalani

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 492

ISBN-13: 1475735324

DOWNLOAD EBOOK

Interest in constrained optimization originated with the simple linear pro gramming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to re visit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the de velopment of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming liter ature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs.


Optimization and Control with Applications

Optimization and Control with Applications

Author: Liqun Qi

Publisher: Springer Science & Business Media

Published: 2005-03-04

Total Pages: 618

ISBN-13: 9780387242545

DOWNLOAD EBOOK

This book contains refereed papers which were presented at the 34th Workshop of the International School of Mathematics "G. Stampacchia,” the International Workshop on Optimization and Control with Applications. The book contains 28 papers that are grouped according to four broad topics: duality and optimality conditions, optimization algorithms, optimal control, and variational inequality and equilibrium problems. The specific topics covered in the individual chapters include optimal control, unconstrained and constrained optimization, complementarity and variational inequalities, equilibrium problems, semi-definite programs, semi-infinite programs, matrix functions and equations, nonsmooth optimization, generalized convexity and generalized monotinicity, and their applications. Audience This book is suitable for researchers, practitioners, and postgraduate students in optimization, operations research, and optimal control.


A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems

A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems

Author: Hanif D. Sherali

Publisher: Springer Science & Business Media

Published: 1998-12-31

Total Pages: 544

ISBN-13: 9780792354871

DOWNLOAD EBOOK

Sets out a new method for generating tight linear or convex programming relaxations for discrete and continuous nonconvex programming problems, featuring a model that affords a useful representation and structure, further strengthened with an automatic reformulation and constraint generation technique. Offers a unified treatment of discrete and continuous nonconvex programming problems, bridging these two types of nonconvexities with a polynomial representation of discrete constraints, and discusses special applications to discrete and continuous nonconvex programs. Material comprises original work of the authors compiled from several journal publications. No index. Annotation copyrighted by Book News, Inc., Portland, OR