Glassy Materials Based Microdevices

Glassy Materials Based Microdevices

Author: Giancarlo C. Righini

Publisher: MDPI

Published: 2019-02-28

Total Pages: 284

ISBN-13: 3038976180

DOWNLOAD EBOOK

Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating pace of innovation in glassy materials; as an example, glass-ceramics, which successfully combine the properties of an amorphous matrix with those of micro- or nano-crystals, offer a very high flexibility of design to chemists, physicists and engineers, who can conceive and implement advanced microdevices. In a very similar way, the synthesis of glassy polymers in a very wide range of chemical structures offers unprecedented potential of applications. The contemporary availability of microfabrication technologies, such as direct laser writing or 3D printing, which add to the most common processes (deposition, lithography and etching), facilitates the development of novel or advanced microdevices based on glassy materials. Biochemical and biomedical sensors, especially with the lab-on-a-chip target, are one of the most evident proofs of the success of this material platform. Other applications have also emerged in environment, food, and chemical industries. The present Special Issue of Micromachines aims at reviewing the current state-of-the-art and presenting perspectives of further development. Contributions related to the technologies, glassy materials, design and fabrication processes, characterization, and, eventually, applications are welcome.


Glassy Materials Based Microdevices

Glassy Materials Based Microdevices

Author:

Publisher:

Published: 2019

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating pace of innovation in glassy materials; as an example, glass-ceramics, which successfully combine the properties of an amorphous matrix with those of micro- or nano-crystals, offer a very high flexibility of design to chemists, physicists and engineers, who can conceive and implement advanced microdevices. In a very similar way, the synthesis of glassy polymers in a very wide range of chemical structures offers unprecedented potential of applications. The contemporary availability of microfabrication technologies, such as direct laser writing or 3D printing, which add to the most common processes (deposition, lithography and etching), facilitates the development of novel or advanced microdevices based on glassy materials. Biochemical and biomedical sensors, especially with the lab-on-a-chip target, are one of the most evident proofs of the success of this material platform. Other applications have also emerged in environment, food, and chemical industries. The present Special Issue of Micromachines aims at reviewing the current state-of-the-art and presenting perspectives of further development. Contributions related to the technologies, glassy materials, design and fabrication processes, characterization, and, eventually, applications are welcome.


Microfluidic Device Prototyping Via Laser Processing of Glass and Polymer Materials

Microfluidic Device Prototyping Via Laser Processing of Glass and Polymer Materials

Author: Aymen Ben Azouz

Publisher:

Published: 2014

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

In this thesis, three different processes for the fabrication of microchannels in three different base materials were experimentally and numerically modelled in detail in order to understand the effects of processing conditions on process fabrication capabilities. CO2 and Nd:YAG laser processing systems as well as a xurography technique were employed in this work for the development of microfluidic channels. The effects of CO2 laser processing on the process of directly writing microchannels on surface of four different types of glass: soda lime, fused silica, borosilicate and quartz were studied. Mathematical models were developed to relate the process input parameters to the dimensions of the microchannels. The effect of laser processing on the optical transmission capabilities of the glass was also assessed. A novel method, using Nd:YAG laser system, was employed for the fabrication of internal microchannels inside polymeric materials. Microchannels up to three millimetres long were successfully created inside a polycarbonate within a single laser processing step. Mathematical models were developed to express the relationship between laser processing input parameters and the width of these internal microchannels. The Nd:YAG processing parameters for laser welding of polycarbonate sheets were also determined. A new rapid low-cost prototyping method for the fabrication of multilayer microfluidic devices from cyclic olefin copolymer (COC) films was developed. CO2 laser cutting and xurography techniques were employed for the fabrication of the microfluidic features, followed by multilayer lamination via cyclohexane vapour exposure. Process parameters were optimised including solvent exposure time. Functional UV-transparent microfluidic mixing devices were demonstrated which included internally bound polymer monolithic columns within the microfluidic channels. There is a growing interest to use technologies which are in this thesis, the three different developed processes for the fabrication of microchannels in three different base materials provides the basis for achieving higher dimensional accuracies and novel designs within lab-on-a-chip microfluidic sensing devices.


Laser-Based Fabrication for Microfluidics Devices on Glass for Medical Applications

Laser-Based Fabrication for Microfluidics Devices on Glass for Medical Applications

Author: Daniel Nieto García

Publisher:

Published: 2016

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

We report a laser-based process for microstructuring glass materials for microfluidics applications. The hybrid technique is composed of a nanosecond Q-Switch Nd:YVO4 laser for fabricating the initial microfluidic microstructures on soda-lime glass substrates and a thermal treatment for reshaping and improving its morphological and optical qualities. The proposed technique preserves the advantages of the laser direct-write technique in terms of design flexibility, simplicity, fast prototyping, low cost, and so on. The beam spot size, pulse overlapping, ablation threshold, debris deposition, heating temperature, and time are investigated and optimized for fabricating optimal microfluidics structures on glass. The manufactured chips for circulating tumor cells (CTCs) capture were tested with tumor cells (Hec 1A) after being functionalized with an EpCAM antibody coating. Cells were successfully arrested on the pillars after being flown through the device giving our technology a translational application in the field of cancer research.


Conservation and Restoration of Glass

Conservation and Restoration of Glass

Author: Sandra Davison

Publisher: Taylor & Francis

Published: 2008-05-09

Total Pages: 404

ISBN-13: 1136415505

DOWNLOAD EBOOK

Conservation and Restoration of Glass is an in-depth guide to the materials and practices required for the care and preservation of glass objects. It provides thorough coverage of both theoretical and practical aspects of glass conservation. This new edition of Newton and Davison's original book, Conservation of Glass, includes sections on the nature of glass, the historical development and technology of glassmaking, and the deterioration of glass. Professional conservators will welcome the inclusion of recommendations for examination and documentation. Incorporating treatment of both excavated glass and historic and decorative glass, the book provides the knowledge required by conservators and restorers and is invaluable for anyone with glass objects in their care.


Microstructuring of Glasses

Microstructuring of Glasses

Author: Dagmar Hülsenberg

Publisher: Springer

Published: 2008-04-24

Total Pages: 326

ISBN-13: 9783540262459

DOWNLOAD EBOOK

This is the first book that explains how to structure glass for micro- and nanophotonic applications. It deals with various glass compositions and their properties, and the interactions between glass and the electromagnetic waves used to modify it. The book also explores methods for influencing the geometrical microstructure of glass as well as methods to produce actual microdevices. It also details methods for influencing the geometrical microstructure of glasses.


Sol-Gel Derived Optical and Photonic Materials

Sol-Gel Derived Optical and Photonic Materials

Author: Rui Almeida

Publisher: Woodhead Publishing

Published: 2020-11-25

Total Pages: 396

ISBN-13: 0128182369

DOWNLOAD EBOOK

Sol-gel processing is a low temperature, low cost wet chemistry route to a range of different materials, particularly glassy and ceramic oxides, including nanoparticles and powders, fibers, thin films and membranes, or monoliths and composites. Thin films and coatings represent by far the most important category of sol-gel derived products with optical, electronic and magnetic functionalities, for example photoresist and dielectric spin-on-glass layers, flat screen displays, anti-reflection, conducting and magnetic disk coatings, as well as photochromic, electrochromic and photovoltaic coatings. Sol-gel derived materials are homogeneous at the molecular level and are a good example of a bottom-up approach to materials synthesis. There is increasing need of new optical and photonic materials with improved performance, where molecular level homogeneity and easy fabrication in film form may be especially convenient, highlighting a decisive advantage of sol-gel over other more established technologies to obtain graded index optical components, solar control coatings, phosphors, glass ceramics or multilayer photonic structures. There is no book available yet which focuses in particular on optical and photonic sol-gel derived materials. This is what makes this book unique at this point for those especially or exclusively interested in optical and photonic functional materials and applications. This book represents an important tool to update scientists and engineers with recent advances in the rapidly evolving field of optical and photonic materials, components and devices. Our target audience are those working in materials science, physics, engineering and chemistry disciplines, in particular academics and researchers working in advanced optical/photonic processing technologies, research and development engineers in high technology industries and research project leaders. This book will also be an essential tool for graduate students pursuing a PhD or even a Master’s degree. Reviews wide range of sol-gel derived coatings including reflective and anti-reflective, self-cleaning, and electrochromic Discusses latest advances in sol-gel derived photonic crystals including one dimensional, two dimensional, and three dimensional structures Addresses key applications in solid state lighting, solar cells, sensors, fiber optics, and magneto-optical devices


Handbook of Silicon Based MEMS Materials and Technologies

Handbook of Silicon Based MEMS Materials and Technologies

Author: Markku Tilli

Publisher: William Andrew

Published: 2015-09-02

Total Pages: 827

ISBN-13: 0323312233

DOWNLOAD EBOOK

The Handbook of Silicon Based MEMS Materials and Technologies, Second Edition, is a comprehensive guide to MEMS materials, technologies, and manufacturing that examines the state-of-the-art with a particular emphasis on silicon as the most important starting material used in MEMS. The book explains the fundamentals, properties (mechanical, electrostatic, optical, etc.), materials selection, preparation, manufacturing, processing, system integration, measurement, and materials characterization techniques, sensors, and multi-scale modeling methods of MEMS structures, silicon crystals, and wafers, also covering micromachining technologies in MEMS and encapsulation of MEMS components. Furthermore, it provides vital packaging technologies and process knowledge for silicon direct bonding, anodic bonding, glass frit bonding, and related techniques, shows how to protect devices from the environment, and provides tactics to decrease package size for a dramatic reduction in costs. Provides vital packaging technologies and process knowledge for silicon direct bonding, anodic bonding, glass frit bonding, and related techniques Shows how to protect devices from the environment and decrease package size for a dramatic reduction in packaging costs Discusses properties, preparation, and growth of silicon crystals and wafers Explains the many properties (mechanical, electrostatic, optical, etc.), manufacturing, processing, measuring (including focused beam techniques), and multiscale modeling methods of MEMS structures Geared towards practical applications rather than theory


BioMEMS and Biomedical Nanotechnology

BioMEMS and Biomedical Nanotechnology

Author: Abraham P. Lee

Publisher: Springer Science & Business Media

Published: 2007-05-26

Total Pages: 532

ISBN-13: 0387258426

DOWNLOAD EBOOK

blends materials, fabrication, and structure issues of developing nanobio devices in a single volume. treats major nanobio application areas such as drug delivery, molecular diagnostics, and imaging. chapters written by the leading researchers in the field.