This book provides an up-to-date and comprehensive coverage of the properties of glasses as materials and of the vitreous state in general. The broad coverage of the book includes a study of the methods of studying the structure, glass classification, and electrical, optical, thermal and mechanical properties of glasses.
The present book is devoted to problems of a physically important state of condensed matter - the vitreous state. We tried to summarize here the experimental evidence and the different theoretical approaches - structural, thermodynamic and those of statistical physics - connected with the formation, the kinetic stability and with the general nature of glasses as a particular physical state. In addition, a summary is given on the information available concerning proces ses of nucleation and crystallization of glass-forming systems, on methods of preventing or, in contrast, catalyzing crystallization in vitrifying liquids, on the kinetics of nucleation, the modes of crystal growth in undercooled melts and the devitrification of glasses. It was our aim to summarize in the present volume the basic principles and the most significant developments of a newly emerging science - glass science - and to show that, at least, in principle, any substance can exist in the vitreous state. Moreover, we have tried to demonstrate that the characteristic properties of the vitreous state may be attributed under certain conditions not only to systems with an amorphous structure (like the common glasses) but also to a number of other states of condensed matter including the crystalline one.
Fundamentals of Inorganic Glasses, Third Edition, is a comprehensive reference on the field of glass science and engineering that covers numerous, significant advances. This new edition includes the most recent advances in glass physics and chemistry, also discussing groundbreaking applications of glassy materials. It is suitable for upper level glass science courses and professional glass scientists and engineers at industrial and government labs. Fundamental concepts, chapter-ending problem sets, an emphasis on key ideas, and timely notes on suggested readings are all included. The book provides the breadth required of a comprehensive reference, offering coverage of the composition, structure and properties of inorganic glasses. - Clearly develops fundamental concepts and the basics of glass science and glass chemistry - Provides a comprehensive discussion of the composition, structure and properties of inorganic glasses - Features a discussion of the emerging applications of glass, including applications in energy, environment, pharmaceuticals, and more - Concludes chapters with problem sets and suggested readings to facilitate self-study
This is the first book to logically present the major problems of the vitreous state within the framework of irreversible thermodynamics. Filled with elementary explanations for difficult problems, this easily understood text/reference treats in detail the criteria of glass transition, the peculiarities of relaxing structural parameters, and the Prigogine-Defay ratio. Based on the author's rigorous generalization of the Second Law for non-equilibrium, the book systematizes all known thermodynamic data for glasses and melts. The thermodynamic essence of structural relaxation and memory effects are considered. The viscous flow theories are treated as a constituent of the kinetic description. All theoretical questions are illustrated by comparison of calculations with the experiments for glasses of inorganic and organic nature, with special attention to structural classification. An informative review of modern structural investigations is included. The bibliography follows the history of the main problems from the nineteenth century.
The earliest experimental data on an oxygen-free glass have been published by Schulz-Sellack in 1870 [1]. Later on, in 1902, Wood [2], as well as Meier in 1910 [3], carried out the first researches on the optical properties of vitreous selenium. The interest in the glasses that exhibit transparency in the infrared region of the optical spectrum rose at the beginning of the twentieth century. Firstly were investigated the heavy metal oxides and the transparency limit was extended from (the case of the classical oxide glasses) up to wavelength. In order to extend this limit above the scientists tried the chemical compositions based on the elements of the sixth group of the Periodic Table, the chalcogens: sulphur, selenium and tellurium. The systematic research in the field of glasses based on chalcogens, called chalcogenide glasses, started at the middle of our century. In 1950 Frerichs [4] investigated the glass and published the paper: “New optical glasses transparent in infrared up to 12 . Several years later he started the study of the selenium glass and prepared several binary glasses with sulphur [5]. Glaze and co-workers [6] developed in 1957 the first method for the preparation of the glass at the industrial scale, while Winter-Klein [7] published reports on numerous chalcogenides prepared in the vitreous state.
This book provides a concise and inexpensive introduction for an undergraduate course in glass science and technology. The level of the book has deliberately been maintained at the introductory level to avoid confusion of the student by inclusion of more advanced material, and is unique in that its text is limited to the amount suitable for a one term course for students in materials science, ceramics or inorganic chemistry. The contents cover the fundamental topics of importance in glass science and technology, including glass formation, crystallization, phase separation and structure of glasses. Additional chapters discuss the most important properties of glasses, including discussion of physical, optical, electrical, chemical and mechanical properties. A final chapter provides an introduction to a number of methods used to form technical glasses, including glass sheet, bottles, insulation fibre, optical fibres and other common commercial products. In addition, the book contains discussion of the effects of phase separation and crystallization on the properties of glasses, which is neglected in other texts. Although intended primarily as a textbook, Introduction to Glass Science and Technology will also be invaluable to the engineer or scientist who desires more knowledge regarding the formation, properties and production of glass.
This Encyclopedia begins with an introduction summarizing itsscope and content. Glassmaking; Structure of Glass, GlassPhysics,Transport Properties, Chemistry of Glass, Glass and Light,Inorganic Glass Families, Organic Glasses, Glass and theEnvironment, Historical and Economical Aspect of Glassmaking,History of Glass, Glass and Art, and outlinepossible newdevelopments and uses as presented by the best known people in thefield (C.A. Angell, for example). Sections and chapters arearranged in a logical order to ensure overall consistency and avoiduseless repetitions. All sections are introduced by a briefintroduction and attractive illustration. Newly investigatedtopics will be addresses, with the goal of ensuring that thisEncyclopedia remains a reference work for years to come.
The book consists of a series of edited chapters, each written by an expert in the field and focusing on a particular characterization technique as applied to glass. The book covers a variety of techniques ranging from the very common (like Raman and FTIR) to the most recent (and less well known) ones, like SEM for structural analysis and photoelastic measurements. The level of the chapters make it suitable for researchers and for graduate students about to start their research work. It will also: discuss the technique itself, background, nuances when it comes to looking at glassy materials, interpretation of results, case studies, and recent and near-future innovations Fill a widening gap in modern techniques for glass characterization Provide much needed updates on the multiple essential characterization techniques
Silicate Science, Volume VII: Glass Science reviews the advances made in silicate research from 1960 through 1970, with emphasis on glass science. Although much of the discussion is still based on the classic physical chemistry theories, an attempt is made to introduce the essential solid-state physics principles and to show how they can be applied to non-crystalline solids. The properties of many diverse vitreous materials are presented. Comprised of seven chapters, this volume begins with an overview of glass-forming elements and their compounds, paying particular attention to their general character as glass-forming phases. The properties of of chalcogenide glasses and non-silicate oxide glasses are also discussed. The next chapters focus on the viscosity of molten glass; the electrolytic conductivity of silicates; the specific volumina of glass melts; and specific applications of infrared spectroscopy to solving structure problems. The physical properties of glass, varied by thermal actions in the transformation and annealing ranges, are considered as well. The final chapter is devoted to miscellaneous additional constitution problems, with particular reference to the volatilization of lead silicate glasses from glass melts and vitreous semiconductors of chalcogenide glasses. This book will be of interest to mineralogists and crystallographers.
Written by renowned researchers in the field, this up-to-date treatise fills the gap for a high-level work discussing current materials and processes. It covers all the steps involved, from vitrification, relaxation and viscosity, right up to the prediction of glass properties, paving the way for improved methods and applications. For solid state physicists and chemists, materials scientists, and those working in the ceramics industry. With a preface by L. David Pye and a foreword by Edgar D. Zanotto