Development of Vitrification Process and Glass Formulation for Nuclear Waste Conditioning

Development of Vitrification Process and Glass Formulation for Nuclear Waste Conditioning

Author:

Publisher:

Published: 2002

Total Pages: 9

ISBN-13:

DOWNLOAD EBOOK

The vitrification of high-level waste is the internationally recognized standard to minimize the impact to the environment resulting from waste disposal as well as to minimize the volume of conditioned waste to be disposed of. COGEMA has been vitrifying high-level waste industrially for over 20 years and is currently operating three commercial vitrification facilities based on a hot metal crucible technology, with outstanding records of safety, reliability and product quality. To further increase the performance of vitrification facilities, CEA and COGEMA have been developing the cold crucible melter technology since the beginning of the 1980s. This type of melter is characterized by a virtually unlimited equipment service life and a great flexibility in dealing with various types of waste and allowing development of high temperature matrices. In complement of and in parallel with the vitrification process, a glass formulation methodology has been developed by the CEA in order to tailor matrices for the wastes to be conditioned while providing the best adaptation to the processing technology. The development of a glass formulation is a trade-off between material properties and qualities, technical feasibility, and disposal safety criteria. It involves non-radioactive and radioactive laboratories in order to achieve a comprehensive matrix qualification. Several glasses and glass ceramics have thus been studied by the CEA to be compliant with industrial needs and waste characteristics: glasses or other matrices for a large spectrum of fission products, or for high contents of specifics elements such as sodium, phosphate, iron, molybdenum, or actinides. New glasses or glass-ceramics designed to minimize the final wasteform volume for solutions produced during the reprocessing of high burnup fuels or to treat legacy wastes are now under development and take benefit from the latest CEA hot-laboratories and technology development. The paper presents the CEA state-of-the-art in developing matrices or glasses and provides several examples.


New Developments in Glassy Nuclear Wasteforms

New Developments in Glassy Nuclear Wasteforms

Author: Michael I. Ojovan

Publisher: Nova Publishers

Published: 2007

Total Pages: 152

ISBN-13: 9781600217838

DOWNLOAD EBOOK

Based on the authors' recent investigations, this book describes the application of glassy and polyphase composite materials for nuclear waste immobilisation. It introduces immobilisation issues beginning with a short description of nuclear waste types and compositions. Sources of nuclear waste are described including the nuclear fuel cycle, operational and spent nuclear fuel reprocessing waste streams. The glassy waste forms currently being used for high-, intermediate- and low level radioactive waste immobilisation are described. Problems related to immobilisation capacity, process efficiency and long-term radionucleide retention are highlighted. Scientific and technical problems in nuclear waste immobilisation are emphasised in particular long-term waste form stability and durability. Recent developments in advanced nuclear waste forms are described such as glass composite materials (GCM) with higher versatility and waste loading. New immobilisation approaches and technologies are described including advanced cold crucible induction melting (CCM), self sustaining thermochemical immobilisation (SSI), and in-situ self-sintering in deep underground repositories. Long-term durability tests of nuclear waste glasses are outlined and the role of ion-exchange phase in glass corrosion is described in detail.


Waste Immobilization in Glass and Ceramic Based Hosts

Waste Immobilization in Glass and Ceramic Based Hosts

Author: Ian W. Donald

Publisher: John Wiley & Sons

Published: 2010-04-01

Total Pages: 526

ISBN-13: 1444319361

DOWNLOAD EBOOK

The safe storage in glass-based materials of both radioactiveand non-radioactive hazardous wastes is covered in a single book,making it unique Provides a comprehensive and timely reference source at thiscritical time in waste management, including an extensive andup-to-date bibliography in all areas outlined to waste conversionand related technologies, both radioactive and non-radioactive Brings together all aspects of waste vitrification, drawscomparisons between the different types of wastes and treatments,and outlines where lessons learnt in the radioactive waste fieldcan be of benefit in the treatment of non-radioactive wastes


Encyclopedia of Glass Science, Technology, History, and Culture Two Volume Set

Encyclopedia of Glass Science, Technology, History, and Culture Two Volume Set

Author: Pascal Richet

Publisher: John Wiley & Sons

Published: 2021-02-05

Total Pages: 1568

ISBN-13: 1118799399

DOWNLOAD EBOOK

This Encyclopedia begins with an introduction summarizing itsscope and content. Glassmaking; Structure of Glass, GlassPhysics,Transport Properties, Chemistry of Glass, Glass and Light,Inorganic Glass Families, Organic Glasses, Glass and theEnvironment, Historical and Economical Aspect of Glassmaking,History of Glass, Glass and Art, and outlinepossible newdevelopments and uses as presented by the best known people in thefield (C.A. Angell, for example). Sections and chapters arearranged in a logical order to ensure overall consistency and avoiduseless repetitions. All sections are introduced by a briefintroduction and attractive illustration. Newly investigatedtopics will be addresses, with the goal of ensuring that thisEncyclopedia remains a reference work for years to come.


Waste Forms Technology and Performance

Waste Forms Technology and Performance

Author: National Research Council

Publisher: National Academies Press

Published: 2011-09-05

Total Pages: 308

ISBN-13: 0309187338

DOWNLOAD EBOOK

The Department of Energy's Office of Environmental Management (DOE-EM) is responsible for cleaning up radioactive waste and environmental contamination resulting from five decades of nuclear weapons production and testing. A major focus of this program involves the retrieval, processing, and immobilization of waste into stable, solid waste forms for disposal. Waste Forms Technology and Performance, a report requested by DOE-EM, examines requirements for waste form technology and performance in the cleanup program. The report provides information to DOE-EM to support improvements in methods for processing waste and selecting and fabricating waste forms. Waste Forms Technology and Performance places particular emphasis on processing technologies for high-level radioactive waste, DOE's most expensive and arguably most difficult cleanup challenge. The report's key messages are presented in ten findings and one recommendation.


Vitrification as a Low-level Radioactive Mixed Waste Treatment Technology at Argonne National Laboratory

Vitrification as a Low-level Radioactive Mixed Waste Treatment Technology at Argonne National Laboratory

Author:

Publisher:

Published: 1995

Total Pages: 13

ISBN-13:

DOWNLOAD EBOOK

Argonne National Laboratory-East (ANL-E) is developing plans to use vitrification to treat low-level radioactive mixed wastes (LLMW) generated onsite. The ultimate objective of this project is to install a full-scale vitrification system at ANL-E capable of processing the annual generation and historic stockpiles of selected LLMW streams. This project is currently in the process of identifying a range of processible glass compositions that can be produced from actual mixed wastes and additives, such as boric acid or borax. During the formulation of these glasses, there has been an emphasis on maximizing the waste content in the glass (70 to 90 wt %), reducing the overall final waste volume, and producing a stabilized low-level radioactive waste glass. Crucible glass studies with actual mixed waste streams have produced alkali borosilicate glasses that pass the Toxic Characteristic Leaching Procedure (TCLP) test. These same glass compositions, spiked with toxic metals well above the expected levels in actual wastes, also pass the TCLP test. These results provide compelling evidence that the vitrification system and the glass waste form will be robust enough to accommodate expected variations in the LLMW streams from ANL-E. Approximately 40 crucible melts will be studied to establish a compositional envelope for vitrifying ANL-E mixed wastes. Also being determined is the identity of volatilized metals or off-gases that will be generated.


Cementitious Materials for Nuclear Waste Immobilization

Cementitious Materials for Nuclear Waste Immobilization

Author: Rehab O. Abdel Rahman

Publisher: John Wiley & Sons

Published: 2014-11-17

Total Pages: 245

ISBN-13: 1118512006

DOWNLOAD EBOOK

Cementitious materials are an essential part in any radioactive waste disposal facility. Conditioning processes such as cementation are used to convert waste into a stable solid form that is insoluble and will prevent dispersion to the surrounding environment. It is incredibly important to understand the long-term behavior of these materials. This book summarises approaches and current practices in use of cementitious materials for nuclear waste immobilisation. It gives a unique description of the most important aspects of cements as nuclear waste forms: starting with a description of wastes, analyzing the cementitious systems used for immobilization and describing the technologies used, and ending with analysis of cementitious waste forms and their long term behavior in an envisaged disposal environment. Extensive research has been devoted to study the feasibility of using cement or cement based materials in immobilizing and solidifying different radioactive wastes. However, these research results are scattered. This work provides the reader with both the science and technology of the immobilization process, and the cementitious materials used to immobilize nuclear waste. It summarizes current knowledge in the field, and highlights important areas that need more investigation. The chapters include: Introduction, Portland cement, Alternative cements, Cement characterization and testing, Radioactive waste cementation, Waste cementation technology, Cementitious wasteform durability and performance assessment.


Glass IV

Glass IV

Author: Minoru Tomozawa

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 345

ISBN-13: 1483218309

DOWNLOAD EBOOK

Treatise on Materials Science and Technology, Volume 28: Glass IV covers the developments in glass science and technology. The book discusses the use of silicon dioxide films in semiconductor devices; the nuclear waste glasses; and the synthesis and properties of oxynitride glasses. The text also describes the preparation, the properties, and the applications of heavy-metal fluoride glasses; and an analytical model of viscoelasticity in seals. Materials scientists and materials engineers will find the book invaluable.