Topology and Geometry

Topology and Geometry

Author: Glen E. Bredon

Publisher: Springer Science & Business Media

Published: 1993-06-24

Total Pages: 580

ISBN-13: 0387979263

DOWNLOAD EBOOK

This book offers an introductory course in algebraic topology. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. From the reviews: "An interesting and original graduate text in topology and geometry...a good lecturer can use this text to create a fine course....A beginning graduate student can use this text to learn a great deal of mathematics."—-MATHEMATICAL REVIEWS


Geometric Topology in Dimensions 2 and 3

Geometric Topology in Dimensions 2 and 3

Author: E.E. Moise

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 272

ISBN-13: 1461299063

DOWNLOAD EBOOK

Geometric topology may roughly be described as the branch of the topology of manifolds which deals with questions of the existence of homeomorphisms. Only in fairly recent years has this sort of topology achieved a sufficiently high development to be given a name, but its beginnings are easy to identify. The first classic result was the SchOnflies theorem (1910), which asserts that every 1-sphere in the plane is the boundary of a 2-cell. In the next few decades, the most notable affirmative results were the "Schonflies theorem" for polyhedral 2-spheres in space, proved by J. W. Alexander [Ad, and the triangulation theorem for 2-manifolds, proved by T. Rad6 [Rd. But the most striking results of the 1920s were negative. In 1921 Louis Antoine [A ] published an extraordinary paper in which he 4 showed that a variety of plausible conjectures in the topology of 3-space were false. Thus, a (topological) Cantor set in 3-space need not have a simply connected complement; therefore a Cantor set can be imbedded in 3-space in at least two essentially different ways; a topological 2-sphere in 3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres in 3-space, there is not necessarily any third 2-sphere which separates them from one another in 3-space; and so on and on. The well-known "horned sphere" of Alexander [A ] appeared soon thereafter.


Geometry and Topology of Manifolds: Surfaces and Beyond

Geometry and Topology of Manifolds: Surfaces and Beyond

Author: Vicente Muñoz

Publisher: American Mathematical Soc.

Published: 2020-10-21

Total Pages: 408

ISBN-13: 1470461323

DOWNLOAD EBOOK

This book represents a novel approach to differential topology. Its main focus is to give a comprehensive introduction to the classification of manifolds, with special attention paid to the case of surfaces, for which the book provides a complete classification from many points of view: topological, smooth, constant curvature, complex, and conformal. Each chapter briefly revisits basic results usually known to graduate students from an alternative perspective, focusing on surfaces. We provide full proofs of some remarkable results that sometimes are missed in basic courses (e.g., the construction of triangulations on surfaces, the classification of surfaces, the Gauss-Bonnet theorem, the degree-genus formula for complex plane curves, the existence of constant curvature metrics on conformal surfaces), and we give hints to questions about higher dimensional manifolds. Many examples and remarks are scattered through the book. Each chapter ends with an exhaustive collection of problems and a list of topics for further study. The book is primarily addressed to graduate students who did take standard introductory courses on algebraic topology, differential and Riemannian geometry, or algebraic geometry, but have not seen their deep interconnections, which permeate a modern approach to geometry and topology of manifolds.


A First Course in Geometric Topology and Differential Geometry

A First Course in Geometric Topology and Differential Geometry

Author: Ethan D. Bloch

Publisher: Springer Science & Business Media

Published: 2011-06-27

Total Pages: 433

ISBN-13: 0817681221

DOWNLOAD EBOOK

The uniqueness of this text in combining geometric topology and differential geometry lies in its unifying thread: the notion of a surface. With numerous illustrations, exercises and examples, the student comes to understand the relationship of the modern abstract approach to geometric intuition. The text is kept at a concrete level, avoiding unnecessary abstractions, yet never sacrificing mathematical rigor. The book includes topics not usually found in a single book at this level.


Topology and Geometry for Physicists

Topology and Geometry for Physicists

Author: Charles Nash

Publisher: Courier Corporation

Published: 2013-08-16

Total Pages: 302

ISBN-13: 0486318362

DOWNLOAD EBOOK

Written by physicists for physics students, this text assumes no detailed background in topology or geometry. Topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory. 1983 edition.


Geometry and Topology

Geometry and Topology

Author: Miles Reid

Publisher: Cambridge University Press

Published: 2005-11-10

Total Pages: 218

ISBN-13: 9780521848893

DOWNLOAD EBOOK

Geometry aims to describe the world around us. It is central to many branches of mathematics and physics, and offers a whole range of views on the universe. This is an introduction to the ideas of geometry and includes generous helpings of simple explanations and examples. The book is based on many years teaching experience so is thoroughly class-tested, and as prerequisites are minimal, it is suited to newcomers to the subject. There are plenty of illustrations; chapters end with a collection of exercises, and solutions are available for teachers.


Handbook of Geometric Topology

Handbook of Geometric Topology

Author: R.B. Sher

Publisher: Elsevier

Published: 2001-12-20

Total Pages: 1145

ISBN-13: 0080532853

DOWNLOAD EBOOK

Geometric Topology is a foundational component of modern mathematics, involving the study of spacial properties and invariants of familiar objects such as manifolds and complexes. This volume, which is intended both as an introduction to the subject and as a wide ranging resouce for those already grounded in it, consists of 21 expository surveys written by leading experts and covering active areas of current research. They provide the reader with an up-to-date overview of this flourishing branch of mathematics.


Geometry and Topology for Mesh Generation

Geometry and Topology for Mesh Generation

Author: Herbert Edelsbrunner

Publisher: Cambridge University Press

Published: 2001-05-28

Total Pages: 206

ISBN-13: 9780521793094

DOWNLOAD EBOOK

The book combines topics in mathematics (geometry and topology), computer science (algorithms), and engineering (mesh generation). The original motivation for these topics was the difficulty faced (both conceptually and in the technical execution) in any attempt to combine elements of combinatorial and of numerical algorithms. Mesh generation is a topic where a meaningful combination of these different approaches to problem solving is inevitable. The book develops methods from both areas that are amenable to combination, and explains recent breakthrough solutions to meshing that fit into this category.The book should be an ideal graduate text for courses on mesh generation. The specific material is selected giving preference to topics that are elementary, attractive, lend themselves to teaching, useful, and interesting.


Differential Geometry and Topology

Differential Geometry and Topology

Author: Keith Burns

Publisher: CRC Press

Published: 2005-05-27

Total Pages: 408

ISBN-13: 9781584882534

DOWNLOAD EBOOK

Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.