Geometry of Nonholonomically Constrained Systems
Author: Richard H. Cushman
Publisher: World Scientific
Published: 2010
Total Pages: 421
ISBN-13: 9814289493
DOWNLOAD EBOOK1. Nonholonomically constrained motions. 1.1. Newton's equations. 1.2. Constraints. 1.3. Lagrange-d'Alembert equations. 1.4. Lagrange derivative. 1.5. Hamilton-d'Alembert equations. 1.6. Distributional Hamiltonian formulation. 1.7. Almost Poisson brackets. 1.8. Momenta and momentum equation. 1.9. Projection principle. 1.10. Accessible sets. 1.11. Constants of motion. 1.12. Notes -- 2. Group actions and orbit spaces. 2.1. Group actions. 2.2. Orbit spaces. 2.3. Isotropy and orbit types. 2.4. Smooth structure on an orbit space. 2.5. Subcartesian spaces. 2.6. Stratification of the orbit space by orbit types. 2.7. Derivations and vector fields on a differential space. 2.8. Vector fields on a stratified differential space. 2.9. Vector fields on an orbit space. 2.10. Tangent objects to an orbit space. 2.11. Notes -- 3. Symmetry and reduction. 3.1. Dynamical systems with symmetry. 3.2. Nonholonomic singular reduction. 3.3. Nonholonomic regular reduction. 3.4. Chaplygin systems. 3.5. Orbit types and reduction. 3.6. Conservation laws. 3.7. Lifted actions and the momentum equation. 3.8. Notes -- 4. Reconstruction, relative equilibria and relative periodic orbits. 4.1. Reconstruction. 4.2. Relative equilibria. 4.3. Relative periodic orbits. 4.4. Notes -- 5. Carathéodory's sleigh. 5.1. Basic set up. 5.2. Equations of motion. 5.3. Reduction of the E(2) symmetry. 5.4. Motion on the E(2) reduced phase space. 5.5. Reconstruction. 5.6. Notes -- 6. Convex rolling rigid body. 6.1. Basic set up. 6.2. Unconstrained motion. 6.3. Constraint distribution. 6.4. Constrained equations of motion. 6.5. Reduction of the translational [symbol] symmetry. 6.6. Reduction of E(2) symmetry. 6.7. Body of revolution. 6.8. Notes -- 7. The rolling disk. 7.1. General set up. 7.2. Reduction of the E(2) x S[symbol] symmetry. 7.3. Reconstruction. 7.4. Relative equilibria. 7.5. A potential function on an interval. 7.6. Scaling. 7.7. Solutions of the rescaled Chaplygin equations. 7.8. Bifurcations of a vertical disk. 7.9. The global geometry of the degeneracy locus. 7.10. Falling flat. 7.11. Near falling flat. 7.12. The bifurcation diagram. 7.13. The integral map. 7.14. Constant energy slices. 7.15. The spatial rotational shift. 7.16. Notes.