Suitable for advanced undergraduate and graduate students of engineering, physics, and mathematics and scientific researchers of all types, this is the first authoritative text on invisibility and the science behind it. More than 100 full-color illustrations, plus exercises with solutions. 2010 edition.
This re-examination of alchemical engravings of the late Renaissance uses an innovative semiotic method in analysing their geometrical and optical rhetorical devices. The images are contextualised within contemporary metaphysics, specifically, the discourse of light, and in Protestant reformism.
This book uses art photography as a point of departure for learning about physics, while also using physics as a point of departure for asking fundamental questions about the nature of photography as an art. Although not a how-to manual, the topics center around hands-on applications, most-often illustrated by photographic processes that are inexpensive and easily accessible to students (including a versatile new process developed by the author, and herein first described in print). A central theme is the connection between the physical interaction of light and matter on the one hand, and the artistry of the photographic processes and their results on the other. Geometry and the Nature of Light focuses on the physics of light and the optics of lenses, but also includes extended discussions of topics less commonly covered in a beginning text, including symmetry in art and physics, different physical processes of the scattering of light, photograms (photographic shadow prints) and the nature of shadows, elements of 2-dimensional design, pinhole photography and the view camera. Although written at a beginning undergraduate level, the topics are chosen for their role in a more general discussion of the relation between science and art that is of interest to readers of all backgrounds and levels of expertise.
This review of literature on perspective constructions from the Renaissance through the 18th century covers 175 authors, emphasizing Peiro della Francesca, Guidobaldo del Monte, Simon Stevin, Brook Taylor, and Johann Heinrich. It treats such topics as the various methods of constructing perspective, the development of theories underlying the constructions, and the communication between mathematicians and artisans in these developments.
A fascinating and inspirational look at the vital link between the hidden geometrical order of the universe, geometry in nature, and the geometry of the man-made world. The Da Vinci Code has awakened the public to the powerful and very ancient idea that religious truths and mathematical principles are intimately intertwined. Sacred Geometry offers an accessible way of understanding how that connection is revealed in nature and the arts. Over the centuries, temple builders have relied on magic numbers to shape sacred spaces, astronomers have used geometry to calculate holy seasons, and philosophers have observed the harmony of the universe in the numerical properties of music. By showing how the discoveries of mathematics are manifested over and over again in biology and physics, and how they have inspired the greatest works of art, this illuminating study reveals the universal principles that link us to the infinite.
Integrate practical insights from modern physics, ancient Hermetic Laws, non-dual meta-physics, transpersonal psychology, and humor, as tools for undoing conflicting beliefs we've dreamed ourselves into. The seven Hermetic laws are explored in depth and demonstrate how a mindfulness that embraces 'other' as 'self' can reverse the typical misapplication of these inescapable laws of Mentalism, Correspondence, Vibration, Polarity, Rhythm, Cause & Effect and Generation. Ubiquitous geometric symbols, paired to each of these laws - the circle, vesica piscis, sine wave, line, spiral, fractal and yin-yang - and their countless commonplace variations, seen from the vantage point of shared interests, reflect these ideas. The inspired use of natural law restores attributes of life, love, strength, purity, beauty, perfection and gratitude to our awareness.
Mathematical billiards describe the motion of a mass point in a domain with elastic reflections off the boundary or, equivalently, the behavior of rays of light in a domain with ideally reflecting boundary. From the point of view of differential geometry, the billiard flow is the geodesic flow on a manifold with boundary. This book is devoted to billiards in their relation with differential geometry, classical mechanics, and geometrical optics. Topics covered include variational principles of billiard motion, symplectic geometry of rays of light and integral geometry, existence and nonexistence of caustics, optical properties of conics and quadrics and completely integrable billiards, periodic billiard trajectories, polygonal billiards, mechanisms of chaos in billiard dynamics, and the lesser-known subject of dual (or outer) billiards. The book is based on an advanced undergraduate topics course. Minimum prerequisites are the standard material covered in the first two years of college mathematics (the entire calculus sequence, linear algebra). However, readers should show some mathematical maturity and rely on their mathematical common sense. A unique feature of the book is the coverage of many diverse topics related to billiards, for example, evolutes and involutes of plane curves, the four-vertex theorem, a mathematical theory of rainbows, distribution of first digits in various sequences, Morse theory, the Poincare recurrence theorem, Hilbert's fourth problem, Poncelet porism, and many others. There are approximately 100 illustrations. The book is suitable for advanced undergraduates, graduate students, and researchers interested in ergodic theory and geometry. This volume has been copublished with the Mathematics Advanced Study Semesters program at Penn State.
Within cognitive science, two approaches currently dominate the problem of modeling representations. The symbolic approach views cognition as computation involving symbolic manipulation. Connectionism, a special case of associationism, models associations using artificial neuron networks. Peter Gärdenfors offers his theory of conceptual representations as a bridge between the symbolic and connectionist approaches. Symbolic representation is particularly weak at modeling concept learning, which is paramount for understanding many cognitive phenomena. Concept learning is closely tied to the notion of similarity, which is also poorly served by the symbolic approach. Gärdenfors's theory of conceptual spaces presents a framework for representing information on the conceptual level. A conceptual space is built up from geometrical structures based on a number of quality dimensions. The main applications of the theory are on the constructive side of cognitive science: as a constructive model the theory can be applied to the development of artificial systems capable of solving cognitive tasks. Gärdenfors also shows how conceptual spaces can serve as an explanatory framework for a number of empirical theories, in particular those concerning concept formation, induction, and semantics. His aim is to present a coherent research program that can be used as a basis for more detailed investigations.