Geometry Of Crystallographic Groups (Second Edition)

Geometry Of Crystallographic Groups (Second Edition)

Author: Andrzej Szczepanski

Publisher: World Scientific

Published: 2024-07-30

Total Pages: 272

ISBN-13: 9811286612

DOWNLOAD EBOOK

It is eleven years since the First Edition of Geometry of Crystallographic Groups appeared. This Second Edition expands on the first, providing details of a new result of automorphism of crystallographic groups, and on Hantzsche-Wendt groups/manifolds.Crystalographic groups are groups which act via isometries on some n-dimensional Euclidean space, so-named because in three dimensions they occur as the symmetry groups of a crystal. There are short introductions to the theme before every chapter, and a list of conjectures and open projects at the end of the book.Geometry of Crystallographic Groups is suitable as a textbook for students, containing basic theory of crystallographic groups. It is also suitable for researchers in the field, discussing in its second half more advanced and recent topics.


Geometry of Crystallographic Groups

Geometry of Crystallographic Groups

Author: Andrzej Szczepański

Publisher: World Scientific

Published: 2012

Total Pages: 208

ISBN-13: 9814412252

DOWNLOAD EBOOK

Crystallographic groups are groups which act in a nice way and via isometries on some n-dimensional Euclidean space. This book gives an example of the torsion free crystallographic group with a trivial center and a trivial outer automorphism group.


Groups

Groups

Author: R. P. Burn

Publisher: Cambridge University Press

Published: 1987-09-03

Total Pages: 260

ISBN-13: 9780521347938

DOWNLOAD EBOOK

Following the same successful approach as Dr. Burn's previous book on number theory, this text consists of a carefully constructed sequence of questions that will enable the reader, through participation, to study all the group theory covered by a conventional first university course. An introduction to vector spaces, leading to the study of linear groups, and an introduction to complex numbers, leading to the study of Möbius transformations and stereographic projection, are also included. Quaternions and their relationships to 3-dimensional isometries are covered, and the climax of the book is a study of the crystallographic groups, with a complete analysis of these groups in two dimensions.


Handbook of Discrete and Computational Geometry, Second Edition

Handbook of Discrete and Computational Geometry, Second Edition

Author: Csaba D. Toth

Publisher: CRC Press

Published: 2004-04-13

Total Pages: 1557

ISBN-13: 1420035312

DOWNLOAD EBOOK

While high-quality books and journals in this field continue to proliferate, none has yet come close to matching the Handbook of Discrete and Computational Geometry, which in its first edition, quickly became the definitive reference work in its field. But with the rapid growth of the discipline and the many advances made over the past seven years, it's time to bring this standard-setting reference up to date. Editors Jacob E. Goodman and Joseph O'Rourke reassembled their stellar panel of contributors, added manymore, and together thoroughly revised their work to make the most important results and methods, both classic and cutting-edge, accessible in one convenient volume. Now over more then 1500 pages, the Handbook of Discrete and Computational Geometry, Second Edition once again provides unparalleled, authoritative coverage of theory, methods, and applications. Highlights of the Second Edition: Thirteen new chapters: Five on applications and others on collision detection, nearest neighbors in high-dimensional spaces, curve and surface reconstruction, embeddings of finite metric spaces, polygonal linkages, the discrepancy method, and geometric graph theory Thorough revisions of all remaining chapters Extended coverage of computational geometry software, now comprising two chapters: one on the LEDA and CGAL libraries, the other on additional software Two indices: An Index of Defined Terms and an Index of Cited Authors Greatly expanded bibliographies


Geometry Crystal Groups (2nd Ed) Hb

Geometry Crystal Groups (2nd Ed) Hb

Author: Andrzej Szczepanski

Publisher: World Scientific Publishing Company

Published: 2024-08-09

Total Pages: 0

ISBN-13: 9789811286599

DOWNLOAD EBOOK

It is eleven years since the First Edition of Geometry of Crystallographic Groups appeared. This Second Edition expands on the first, providing details of a new result of automorphism of crystallographic groups, and on Hantzsche-Wendt groups/manifolds. Crystalographic groups are groups which act via isometries on some n-dimensional Euclidean space, so-named because in three dimensions they occur as the symmetry groups of a crystal. There are short introductions to the theme before every chapter, and a list of conjectures and open projects at the end of the book. Geometry of Crystallographic Groups is suitable as a textbook for students, containing basic theory of crystallographic groups. It is also suitable for researchers in the field, discussing in its second half more advanced and recent topics.


Geometry Of Crystallographic Groups

Geometry Of Crystallographic Groups

Author: Andrzej Szczepanski

Publisher: World Scientific

Published: 2012-08-30

Total Pages: 208

ISBN-13: 9814412279

DOWNLOAD EBOOK

Crystallographic groups are groups which act in a nice way and via isometries on some n-dimensional Euclidean space. They got their name, because in three dimensions they occur as the symmetry groups of a crystal (which we imagine to extend to infinity in all directions). The book is divided into two parts. In the first part, the basic theory of crystallographic groups is developed from the very beginning, while in the second part, more advanced and more recent topics are discussed. So the first part of the book should be usable as a textbook, while the second part is more interesting to researchers in the field. There are short introductions to the theme before every chapter. At the end of this book is a list of conjectures and open problems. Moreover there are three appendices. The last one gives an example of the torsion free crystallographic group with a trivial center and a trivial outer automorphism group.This volume omits topics about generalization of crystallographic groups to nilpotent or solvable world and classical crystallography. We want to emphasize that most theorems and facts presented in the second part are from the last two decades. This is after the book of L Charlap “Bieberbach groups and flat manifolds” was published.


Geometry and Discrete Mathematics

Geometry and Discrete Mathematics

Author: Benjamin Fine

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2022-08-22

Total Pages: 364

ISBN-13: 3110740788

DOWNLOAD EBOOK

Fundamentals of mathematics are presented in the two-volume set in an exciting and pedagogically sound way. The present volume examines the most important basic results in geometry and discrete mathematics, along with their proofs, and also their history. New: A chapter on discrete Morse theory and still more graph theory for solving further classical problems as the Travelling Salesman and Postman problem.


Introduction to Quantum Groups and Crystal Bases

Introduction to Quantum Groups and Crystal Bases

Author: Jin Hong

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 327

ISBN-13: 0821828746

DOWNLOAD EBOOK

The purpose of this book is to provide an elementary introduction to the theory of quantum groups and crystal bases, focusing on the combinatorial aspects of the theory.


Crystallographic Texture and Group Representations

Crystallographic Texture and Group Representations

Author: Chi-Sing Man

Publisher: Springer Nature

Published: 2023-01-13

Total Pages: 438

ISBN-13: 9402421580

DOWNLOAD EBOOK

This book starts with an introduction to quantitative texture analysis (QTA), which adopts conventions (active rotations, definition of Euler angles, Wigner D-functions) that conform to those of the present-day mathematics and physics literature. Basic concepts (e.g., orientation; orientation distribution function (ODF), orientation density function, and their relationship) are made precise through their mathematical definition. Parts II and III delve deeper into the mathematical foundations of QTA, where the important role played by group representations is emphasized. Part II includes one chapter on generalized QTA based on the orthogonal group, and Part III one on tensorial Fourier expansion of the ODF and tensorial texture coefficients. This work will appeal to students and practitioners who appreciate a precise presentation of QTA through a unifying mathematical language, and to researchers who are interested in applications of group representations to texture analysis. Previously published in the Journal of Elasticity, Volume 149, issues 1-2, April, 2022


Several Complex Variables with Connections to Algebraic Geometry and Lie Groups

Several Complex Variables with Connections to Algebraic Geometry and Lie Groups

Author: Joseph L. Taylor

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 530

ISBN-13: 082183178X

DOWNLOAD EBOOK

This text presents an integrated development of core material from several complex variables and complex algebraic geometry, leading to proofs of Serre's celebrated GAGA theorems relating the two subjects, and including applications to the representation theory of complex semisimple Lie groups. It includes a thorough treatment of the local theory using the tools of commutative algebra, an extensive development of sheaf theory and the theory of coherent analytic and algebraicsheaves, proofs of the main vanishing theorems for these categories of sheaves, and a complete proof of the finite dimensionality of the cohomology of coherent sheaves on compact varieties. The vanishing theorems have a wide variety of applications and these are covered in detail. Of particular interest arethe last three chapters, which are devoted to applications of the preceding material to the study of the structure theory and representation theory of complex semisimple Lie groups. Included are introductions to harmonic analysis, the Peter-Weyl theorem, Lie theory and the structure of Lie algebras, semisimple Lie algebras and their representations, algebraic groups and the structure of complex semisimple Lie groups. All of this culminates in Milicic's proof of the Borel-Weil-Bott theorem,which makes extensive use of the material developed earlier in the text. There are numerous examples and exercises in each chapter. This modern treatment of a classic point of view would be an excellent text for a graduate course on several complex variables, as well as a useful reference for theexpert.