Geometry and Topology of Manifolds: Surfaces and Beyond

Geometry and Topology of Manifolds: Surfaces and Beyond

Author: Vicente Muñoz

Publisher: American Mathematical Soc.

Published: 2020-10-21

Total Pages: 408

ISBN-13: 1470461323

DOWNLOAD EBOOK

This book represents a novel approach to differential topology. Its main focus is to give a comprehensive introduction to the classification of manifolds, with special attention paid to the case of surfaces, for which the book provides a complete classification from many points of view: topological, smooth, constant curvature, complex, and conformal. Each chapter briefly revisits basic results usually known to graduate students from an alternative perspective, focusing on surfaces. We provide full proofs of some remarkable results that sometimes are missed in basic courses (e.g., the construction of triangulations on surfaces, the classification of surfaces, the Gauss-Bonnet theorem, the degree-genus formula for complex plane curves, the existence of constant curvature metrics on conformal surfaces), and we give hints to questions about higher dimensional manifolds. Many examples and remarks are scattered through the book. Each chapter ends with an exhaustive collection of problems and a list of topics for further study. The book is primarily addressed to graduate students who did take standard introductory courses on algebraic topology, differential and Riemannian geometry, or algebraic geometry, but have not seen their deep interconnections, which permeate a modern approach to geometry and topology of manifolds.


Topology Through Inquiry

Topology Through Inquiry

Author: Michael Starbird

Publisher: American Mathematical Soc.

Published: 2020-09-10

Total Pages: 313

ISBN-13: 1470462613

DOWNLOAD EBOOK

Topology Through Inquiry is a comprehensive introduction to point-set, algebraic, and geometric topology, designed to support inquiry-based learning (IBL) courses for upper-division undergraduate or beginning graduate students. The book presents an enormous amount of topology, allowing an instructor to choose which topics to treat. The point-set material contains many interesting topics well beyond the basic core, including continua and metrizability. Geometric and algebraic topology topics include the classification of 2-manifolds, the fundamental group, covering spaces, and homology (simplicial and singular). A unique feature of the introduction to homology is to convey a clear geometric motivation by starting with mod 2 coefficients. The authors are acknowledged masters of IBL-style teaching. This book gives students joy-filled, manageable challenges that incrementally develop their knowledge and skills. The exposition includes insightful framing of fruitful points of view as well as advice on effective thinking and learning. The text presumes only a modest level of mathematical maturity to begin, but students who work their way through this text will grow from mathematics students into mathematicians. Michael Starbird is a University of Texas Distinguished Teaching Professor of Mathematics. Among his works are two other co-authored books in the Mathematical Association of America's (MAA) Textbook series. Francis Su is the Benediktsson-Karwa Professor of Mathematics at Harvey Mudd College and a past president of the MAA. Both authors are award-winning teachers, including each having received the MAA's Haimo Award for distinguished teaching. Starbird and Su are, jointly and individually, on lifelong missions to make learning—of mathematics and beyond—joyful, effective, and available to everyone. This book invites topology students and teachers to join in the adventure.


Topology of Surfaces

Topology of Surfaces

Author: L.Christine Kinsey

Publisher: Springer Science & Business Media

Published: 1997-09-26

Total Pages: 304

ISBN-13: 9780387941028

DOWNLOAD EBOOK

" . . . that famous pedagogical method whereby one begins with the general and proceeds to the particular only after the student is too confused to understand even that anymore. " Michael Spivak This text was written as an antidote to topology courses such as Spivak It is meant to provide the student with an experience in geomet describes. ric topology. Traditionally, the only topology an undergraduate might see is point-set topology at a fairly abstract level. The next course the average stu dent would take would be a graduate course in algebraic topology, and such courses are commonly very homological in nature, providing quick access to current research, but not developing any intuition or geometric sense. I have tried in this text to provide the undergraduate with a pragmatic introduction to the field, including a sampling from point-set, geometric, and algebraic topology, and trying not to include anything that the student cannot immediately experience. The exercises are to be considered as an in tegral part of the text and, ideally, should be addressed when they are met, rather than at the end of a block of material. Many of them are quite easy and are intended to give the student practice working with the definitions and digesting the current topic before proceeding. The appendix provides a brief survey of the group theory needed.


Manifolds and Differential Geometry

Manifolds and Differential Geometry

Author: Jeffrey Marc Lee

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 690

ISBN-13: 0821848151

DOWNLOAD EBOOK

Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.


An Introduction to Manifolds

An Introduction to Manifolds

Author: Loring W. Tu

Publisher: Springer Science & Business Media

Published: 2010-10-05

Total Pages: 426

ISBN-13: 1441974008

DOWNLOAD EBOOK

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.


Foliations and the Geometry of 3-Manifolds

Foliations and the Geometry of 3-Manifolds

Author: Danny Calegari

Publisher: Oxford University Press on Demand

Published: 2007-05-17

Total Pages: 378

ISBN-13: 0198570082

DOWNLOAD EBOOK

This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.


Introduction to Smooth Manifolds

Introduction to Smooth Manifolds

Author: John M. Lee

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 646

ISBN-13: 0387217525

DOWNLOAD EBOOK

Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why


Geometry from a Differentiable Viewpoint

Geometry from a Differentiable Viewpoint

Author: John McCleary

Publisher: Cambridge University Press

Published: 2013

Total Pages: 375

ISBN-13: 0521116074

DOWNLOAD EBOOK

A thoroughly revised second edition of a textbook for a first course in differential/modern geometry that introduces methods within a historical context.


Mostly Surfaces

Mostly Surfaces

Author: Richard Evan Schwartz

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 330

ISBN-13: 0821853686

DOWNLOAD EBOOK

The goal of the book is to present a tapestry of ideas from various areas of mathematics in a clear and rigorous yet informal and friendly way. Prerequisites include undergraduate courses in real analysis and in linear algebra, and some knowledge of complex analysis. --from publisher description.