Geometry and Billiards

Geometry and Billiards

Author: Serge Tabachnikov

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 192

ISBN-13: 0821839195

DOWNLOAD EBOOK

Mathematical billiards describe the motion of a mass point in a domain with elastic reflections off the boundary or, equivalently, the behavior of rays of light in a domain with ideally reflecting boundary. From the point of view of differential geometry, the billiard flow is the geodesic flow on a manifold with boundary. This book is devoted to billiards in their relation with differential geometry, classical mechanics, and geometrical optics. Topics covered include variational principles of billiard motion, symplectic geometry of rays of light and integral geometry, existence and nonexistence of caustics, optical properties of conics and quadrics and completely integrable billiards, periodic billiard trajectories, polygonal billiards, mechanisms of chaos in billiard dynamics, and the lesser-known subject of dual (or outer) billiards. The book is based on an advanced undergraduate topics course. Minimum prerequisites are the standard material covered in the first two years of college mathematics (the entire calculus sequence, linear algebra). However, readers should show some mathematical maturity and rely on their mathematical common sense. A unique feature of the book is the coverage of many diverse topics related to billiards, for example, evolutes and involutes of plane curves, the four-vertex theorem, a mathematical theory of rainbows, distribution of first digits in various sequences, Morse theory, the Poincare recurrence theorem, Hilbert's fourth problem, Poncelet porism, and many others. There are approximately 100 illustrations. The book is suitable for advanced undergraduates, graduate students, and researchers interested in ergodic theory and geometry. This volume has been copublished with the Mathematics Advanced Study Semesters program at Penn State.


An Introduction To Mathematical Billiards

An Introduction To Mathematical Billiards

Author: Rozikov Utkir A

Publisher: World Scientific

Published: 2018-12-06

Total Pages: 224

ISBN-13: 9813276487

DOWNLOAD EBOOK

A mathematical billiard is a mechanical system consisting of a billiard ball on a table of any form (which can be planar or even a multidimensional domain) but without billiard pockets. The ball moves and its trajectory is defined by the ball's initial position and its initial speed vector. The ball's reflections from the boundary of the table are assumed to have the property that the reflection and incidence angles are the same. This book comprehensively presents known results on the behavior of a trajectory of a billiard ball on a planar table (having one of the following forms: circle, ellipse, triangle, rectangle, polygon and some general convex domains). It provides a systematic review of the theory of dynamical systems, with a concise presentation of billiards in elementary mathematics and simple billiards related to geometry and physics.The description of these trajectories leads to the solution of various questions in mathematics and mechanics: problems related to liquid transfusion, lighting of mirror rooms, crushing of stones in a kidney, collisions of gas particles, etc. The analysis of billiard trajectories can involve methods of geometry, dynamical systems, and ergodic theory, as well as methods of theoretical physics and mechanics, which has applications in the fields of biology, mathematics, medicine, and physics.


Chaotic Billiards

Chaotic Billiards

Author: Nikolai Chernov

Publisher: American Mathematical Society

Published: 2023-09-18

Total Pages: 330

ISBN-13: 1470474425

DOWNLOAD EBOOK

This book covers one of the most exciting but most difficult topics in the modern theory of dynamical systems: chaotic billiards. In physics, billiard models describe various mechanical processes, molecular dynamics, and optical phenomena. The theory of chaotic billiards has made remarkable progress in the past thirty-five years, but it remains notoriously difficult for the beginner, with main results scattered in hardly accessible research articles. This is the first and so far only book that covers all the fundamental facts about chaotic billiards in a complete and systematic manner. The book contains all the necessary definitions, full proofs of all the main theorems, and many examples and illustrations that help the reader to understand the material. Hundreds of carefully designed exercises allow the reader not only to become familiar with chaotic billiards but to master the subject. The book addresses graduate students and young researchers in physics and mathematics. Prerequisites include standard graduate courses in measure theory, probability, Riemannian geometry, topology, and complex analysis. Some of this material is summarized in the appendices to the book.


Poncelet Porisms and Beyond

Poncelet Porisms and Beyond

Author: Vladimir Dragović

Publisher: Springer Science & Business Media

Published: 2011-05-02

Total Pages: 293

ISBN-13: 3034800150

DOWNLOAD EBOOK

The goal of the book is to present, in a complete and comprehensive way, areas of current research interlacing around the Poncelet porism: dynamics of integrable billiards, algebraic geometry of hyperelliptic Jacobians, and classical projective geometry of pencils of quadrics. The most important results and ideas, classical as well as modern, connected to the Poncelet theorem are presented, together with a historical overview analyzing the classical ideas and their natural generalizations. Special attention is paid to the realization of the Griffiths and Harris programme about Poncelet-type problems and addition theorems. This programme, formulated three decades ago, is aimed to understanding the higher-dimensional analogues of Poncelet problems and the realization of the synthetic approach of higher genus addition theorems.


Integrable Hamiltonian Systems

Integrable Hamiltonian Systems

Author: A.V. Bolsinov

Publisher: CRC Press

Published: 2004-02-25

Total Pages: 752

ISBN-13: 0203643429

DOWNLOAD EBOOK

Integrable Hamiltonian systems have been of growing interest over the past 30 years and represent one of the most intriguing and mysterious classes of dynamical systems. This book explores the topology of integrable systems and the general theory underlying their qualitative properties, singularites, and topological invariants. The authors,


Mostly Surfaces

Mostly Surfaces

Author: Richard Evan Schwartz

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 330

ISBN-13: 0821853686

DOWNLOAD EBOOK

The goal of the book is to present a tapestry of ideas from various areas of mathematics in a clear and rigorous yet informal and friendly way. Prerequisites include undergraduate courses in real analysis and in linear algebra, and some knowledge of complex analysis. --from publisher description.


Billiards

Billiards

Author: Serge Tabachnikov

Publisher: SMF

Published: 1995

Total Pages: 142

ISBN-13: 9782856290309

DOWNLOAD EBOOK


Outer Billiards on Kites

Outer Billiards on Kites

Author: Richard Evan Schwartz

Publisher: Princeton University Press

Published: 2009-10-05

Total Pages: 321

ISBN-13: 1400831970

DOWNLOAD EBOOK

Outer billiards is a basic dynamical system defined relative to a convex shape in the plane. B. H. Neumann introduced this system in the 1950s, and J. Moser popularized it as a toy model for celestial mechanics. All along, the so-called Moser-Neumann question has been one of the central problems in the field. This question asks whether or not one can have an outer billiards system with an unbounded orbit. The Moser-Neumann question is an idealized version of the question of whether, because of small disturbances in its orbit, the Earth can break out of its orbit and fly away from the Sun. In Outer Billiards on Kites, Richard Schwartz presents his affirmative solution to the Moser-Neumann problem. He shows that an outer billiards system can have an unbounded orbit when defined relative to any irrational kite. A kite is a quadrilateral having a diagonal that is a line of bilateral symmetry. The kite is irrational if the other diagonal divides the quadrilateral into two triangles whose areas are not rationally related. In addition to solving the basic problem, Schwartz relates outer billiards on kites to such topics as Diophantine approximation, the modular group, self-similar sets, polytope exchange maps, profinite completions of the integers, and solenoids--connections that together allow for a fairly complete analysis of the dynamical system.