Geometrical Methods in the Theory of Ordinary Differential Equations

Geometrical Methods in the Theory of Ordinary Differential Equations

Author: V.I. Arnold

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 366

ISBN-13: 1461210372

DOWNLOAD EBOOK

Since the first edition of this book, geometrical methods in the theory of ordinary differential equations have become very popular and some progress has been made partly with the help of computers. Much of this progress is represented in this revised, expanded edition, including such topics as the Feigenbaum universality of period doubling, the Zoladec solution, the Iljashenko proof, the Ecalle and Voronin theory, the Varchenko and Hovanski theorems, and the Neistadt theory. In the selection of material for this book, the author explains basic ideas and methods applicable to the study of differential equations. Special efforts were made to keep the basic ideas free from excessive technicalities. Thus the most fundamental questions are considered in great detail, while of the more special and difficult parts of the theory have the character of a survey. Consequently, the reader needs only a general mathematical knowledge to easily follow this text. It is directed to mathematicians, as well as all users of the theory of differential equations.


Geometrical Methods in the Theory of Ordinary Differential Equations

Geometrical Methods in the Theory of Ordinary Differential Equations

Author: V.I. Arnold

Publisher: Springer

Published: 1997-01-01

Total Pages: 351

ISBN-13: 0387966498

DOWNLOAD EBOOK

Since the first edition of this book, geometrical methods in the theory of ordinary differential equations have become very popular and some progress has been made partly with the help of computers. Much of this progress is represented in this revised, expanded edition, including such topics as the Feigenbaum universality of period doubling, the Zoladec solution, the Iljashenko proof, the Ecalle and Voronin theory, the Varchenko and Hovanski theorems, and the Neistadt theory. In the selection of material for this book, the author explains basic ideas and methods applicable to the study of differential equations. Special efforts were made to keep the basic ideas free from excessive technicalities. Thus the most fundamental questions are considered in great detail, while of the more special and difficult parts of the theory have the character of a survey. Consequently, the reader needs only a general mathematical knowledge to easily follow this text. It is directed to mathematicians, as well as all users of the theory of differential equations.


Geometric Numerical Integration

Geometric Numerical Integration

Author: Ernst Hairer

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 526

ISBN-13: 3662050188

DOWNLOAD EBOOK

This book deals with numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by numerous figures, treats applications from physics and astronomy, and contains many numerical experiments and comparisons of different approaches.


Geometry in Partial Differential Equations

Geometry in Partial Differential Equations

Author: Agostino Prastaro

Publisher: World Scientific

Published: 1994

Total Pages: 482

ISBN-13: 9789810214074

DOWNLOAD EBOOK

This book emphasizes the interdisciplinary interaction in problems involving geometry and partial differential equations. It provides an attempt to follow certain threads that interconnect various approaches in the geometric applications and influence of partial differential equations. A few such approaches include: Morse-Palais-Smale theory in global variational calculus, general methods to obtain conservation laws for PDEs, structural investigation for the understanding of the meaning of quantum geometry in PDEs, extensions to super PDEs (formulated in the category of supermanifolds) of the geometrical methods just introduced for PDEs and the harmonic theory which proved to be very important especially after the appearance of the Atiyah-Singer index theorem, which provides a link between geometry and topology.


Geometric Methods in Algebra and Number Theory

Geometric Methods in Algebra and Number Theory

Author: Fedor Bogomolov

Publisher: Springer Science & Business Media

Published: 2006-06-22

Total Pages: 365

ISBN-13: 0817644172

DOWNLOAD EBOOK

* Contains a selection of articles exploring geometric approaches to problems in algebra, algebraic geometry and number theory * The collection gives a representative sample of problems and most recent results in algebraic and arithmetic geometry * Text can serve as an intense introduction for graduate students and those wishing to pursue research in algebraic and arithmetic geometry


Control Theory from the Geometric Viewpoint

Control Theory from the Geometric Viewpoint

Author: Andrei A. Agrachev

Publisher: Springer Science & Business Media

Published: 2004-04-15

Total Pages: 440

ISBN-13: 9783540210191

DOWNLOAD EBOOK

This book presents some facts and methods of Mathematical Control Theory treated from the geometric viewpoint. It is devoted to finite-dimensional deterministic control systems governed by smooth ordinary differential equations. The problems of controllability, state and feedback equivalence, and optimal control are studied. Some of the topics treated by the authors are covered in monographic or textbook literature for the first time while others are presented in a more general and flexible setting than elsewhere. Although being fundamentally written for mathematicians, the authors make an attempt to reach both the practitioner and the theoretician by blending the theory with applications. They maintain a good balance between the mathematical integrity of the text and the conceptual simplicity that might be required by engineers. It can be used as a text for graduate courses and will become most valuable as a reference work for graduate students and researchers.


Topological Methods for Differential Equations and Inclusions

Topological Methods for Differential Equations and Inclusions

Author: John R. Graef

Publisher: CRC Press

Published: 2018-09-25

Total Pages: 375

ISBN-13: 0429822626

DOWNLOAD EBOOK

Topological Methods for Differential Equations and Inclusions covers the important topics involving topological methods in the theory of systems of differential equations. The equivalence between a control system and the corresponding differential inclusion is the central idea used to prove existence theorems in optimal control theory. Since the dynamics of economic, social, and biological systems are multi-valued, differential inclusions serve as natural models in macro systems with hysteresis.


Ordinary Differential Equations With Applications (2nd Edition)

Ordinary Differential Equations With Applications (2nd Edition)

Author: Sze-bi Hsu

Publisher: World Scientific Publishing Company

Published: 2013-06-07

Total Pages: 312

ISBN-13: 9814452920

DOWNLOAD EBOOK

During the past three decades, the development of nonlinear analysis, dynamical systems and their applications to science and engineering has stimulated renewed enthusiasm for the theory of Ordinary Differential Equations (ODE).This useful book, which is based on the lecture notes of a well-received graduate course, emphasizes both theory and applications, taking numerous examples from physics and biology to illustrate the application of ODE theory and techniques.Written in a straightforward and easily accessible style, this volume presents dynamical systems in the spirit of nonlinear analysis to readers at a graduate level and serves both as a textbook and as a valuable resource for researchers.This new edition contains corrections and suggestions from the various readers and users. A new chapter on Monotone Dynamical Systems is added to take into account the new developments in ordinary differential equations and dynamical systems.


Partial Differential Equations and Geometric Measure Theory

Partial Differential Equations and Geometric Measure Theory

Author: Alessio Figalli

Publisher: Springer

Published: 2018-05-23

Total Pages: 224

ISBN-13: 3319740423

DOWNLOAD EBOOK

This book collects together lectures by some of the leaders in the field of partial differential equations and geometric measure theory. It features a wide variety of research topics in which a crucial role is played by the interaction of fine analytic techniques and deep geometric observations, combining the intuitive and geometric aspects of mathematics with analytical ideas and variational methods. The problems addressed are challenging and complex, and often require the use of several refined techniques to overcome the major difficulties encountered. The lectures, given during the course "Partial Differential Equations and Geometric Measure Theory'' in Cetraro, June 2–7, 2014, should help to encourage further research in the area. The enthusiasm of the speakers and the participants of this CIME course is reflected in the text.


Ordinary Differential Equations

Ordinary Differential Equations

Author: Morris Tenenbaum

Publisher: Courier Corporation

Published: 1985-10-01

Total Pages: 852

ISBN-13: 0486649407

DOWNLOAD EBOOK

Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.