Geometrical And Physical Optics

Geometrical And Physical Optics

Author: R.S. Longhurst

Publisher: Orient Blackswan

Published: 1986

Total Pages: 704

ISBN-13: 9788125016236

DOWNLOAD EBOOK

First Published In India In 1986, This Book Is Intended Primarily For Undergraduate Students Of Physics. It Will Also Be Useful For Postgraduate Students Specialising In Optics. This Revised Edition Incorporates New Material, Including The Techniques Of Matrix Algebra And Fourier Methods In Solving Problems In Optics. The Chapter On Photometry Has Been Revised. Important Problems Have Been Outlined Along With Comments, At The End Of The Book.


The Mathematics of Geometrical and Physical Optics

The Mathematics of Geometrical and Physical Optics

Author: Orestes N. Stavroudis

Publisher: John Wiley & Sons

Published: 2006-08-21

Total Pages: 240

ISBN-13: 352760829X

DOWNLOAD EBOOK

In this sequel to his book, "The Optics of Rays, Wavefronts, and Caustics," Stavroudis not only covers his own research results, but also includes more recent developments. The book is divided into three parts, starting with basic mathematical concepts that are further applied in the book. Surface geometry is treated with classical mathematics, while the second part covers the k-function, discussing and solving the eikonal equation as well as Maxwell equations in this context. A final part on applications consists of conclusions drawn or developed in the first two parts of the book, discussing such topics as the Cartesian oval, the modern Schiefspiegler, Huygen's principle, and Maxwell's model of Gauss' perfect lens.


Geometric, Physical, and Visual Optics

Geometric, Physical, and Visual Optics

Author: Michael P. Keating

Publisher: Elsevier Health Sciences

Published: 1988-06-06

Total Pages: 594

ISBN-13: 148328946X

DOWNLOAD EBOOK

A basic optics textbook that integrates relevant visual and ophthalmic optics material with basic geometric and physical optics. Dr. Keating's book uses the vergence approach to optics as well as the wavefront approach to vergence as an aid to developing optics intuition.


Electromagnetic Radiation, Scattering, and Diffraction

Electromagnetic Radiation, Scattering, and Diffraction

Author: Prabhakar H. Pathak

Publisher: John Wiley & Sons

Published: 2021-12-07

Total Pages: 1156

ISBN-13: 1119810531

DOWNLOAD EBOOK

Electromagnetic Radiation, Scattering, and Diffraction Discover a graduate-level text for students specializing in electromagnetic wave radiation, scattering, and diffraction for engineering applications In Electromagnetic Radiation, Scattering and Diffraction, distinguished authors Drs. Prabhakar H. Pathak and Robert J. Burkholder deliver a thorough exploration of the behavior of electromagnetic fields in radiation, scattering, and guided wave environments. The book tackles its subject from first principles and includes coverage of low and high frequencies. It stresses physical interpretations of the electromagnetic wave phenomena along with their underlying mathematics. The authors emphasize fundamental principles and provide numerous examples to illustrate the concepts contained within. Students with a limited undergraduate electromagnetic background will rapidly and systematically advance their understanding of electromagnetic wave theory until they can complete useful and important graduate-level work on electromagnetic wave problems. Electromagnetic Radiation, Scattering and Diffraction also serves as a practical companion for students trying to simulate problems with commercial EM software and trying to better interpret their results. Readers will also benefit from the breadth and depth of topics, such as: Basic equations governing all electromagnetic (EM) phenomena at macroscopic scales are presented systematically. Stationary and relativistic moving boundary conditions are developed. Waves in planar multilayered isotropic and anisotropic media are analyzed. EM theorems are introduced and applied to a variety of useful antenna problems. Modal techniques are presented for analyzing guided wave and periodic structures. Potential theory and Green's function methods are developed to treat interior and exterior EM problems. Asymptotic High Frequency methods are developed for evaluating radiation Integrals to extract ray fields. Edge and surface diffracted ray fields, as well as surface, leaky and lateral wave fields are obtained. A collective ray analysis for finite conformal antenna phased arrays is developed. EM beams are introduced and provide useful basis functions. Integral equations and their numerical solutions via the method of moments are developed. The fast multipole method is presented. Low frequency breakdown is studied. Characteristic modes are discussed. Perfect for graduate students studying electromagnetic theory, Electromagnetic Radiation, Scattering, and Diffraction is an invaluable resource for professional electromagnetic engineers and researchers working in this area.


Introduction to Geometrical Optics

Introduction to Geometrical Optics

Author: Milton Katz

Publisher: World Scientific

Published: 2002

Total Pages: 332

ISBN-13: 9789812382245

DOWNLOAD EBOOK

This book is the culmination of twenty-five years of teaching Geometrical Optics. The volume is organised such that the single spherical refracting surface is the basic optical element. Spherical mirrors are treated as special cases of refraction, with the same applicable equations. Thin lens equations follow as combinations of spherical refracting surfaces while the cardinal points of the thick lens make it equivalent to a thin lens. Ultimately, one set of vergence equations are applicable to all these elements.The chapters are devoted to in-depth treatments of stops, pupils and ports; magnifiers, microscopes, telescopes, and camera lenses; ophthalmic instruments; resolving power and MTF; trigonometric ray tracing; and chromatic and monochromatic aberrations. There are over 100 worked examples, 400 homework problems and 400 illustrations.First published in 1994 by Penumbra Publishing Co.


Geometrical and Visual Optics, Second Edition

Geometrical and Visual Optics, Second Edition

Author: Steven H. Schwartz

Publisher: McGraw Hill Professional

Published: 2013-07-09

Total Pages: 383

ISBN-13: 0071790829

DOWNLOAD EBOOK

Complete coverage of optics information for clinicians. This 2 edition is a comprehensive introduction to the optical principles upon which clinical practice is based. Among the features of this student-friendly textbook are: Self-assessment questions at the end of every chapter. Comprehensive practice examinations. Workbook-style approach teaches students a problem-solving methodology, avoids unnecesary mathematics.


Geometrical Optics in Engineering Physics

Geometrical Optics in Engineering Physics

Author: I︠U︡riĭ Aleksandrovich Kravt︠s︡ov

Publisher: Alpha Science Int'l Ltd.

Published: 2005

Total Pages: 380

ISBN-13: 9781842651599

DOWNLOAD EBOOK

This monograph provides concise and clear coverage of modern ray theory without the need of complicated mathematics. Comprehensive coverage is given to wave problems in engineering physics, considering rays and caustics as physical objects.


Physical Optics

Physical Optics

Author: Giovanni Giusfredi

Publisher: Springer Nature

Published: 2019-11-12

Total Pages: 933

ISBN-13: 3030252795

DOWNLOAD EBOOK

This textbook provides a sound foundation in physical optics by covering key concepts in a rigorous but accessible manner. Propagation of electromagnetic waves is examined from multiple perspectives, with explanation of which viewpoints and methods are best suited to different situations. After an introduction to the theory of electromagnetism, reflection, refraction, and dispersion, topics such as geometrical optics, interference, diffraction, coherence, laser beams, polarization, crystallography, and anisotropy are closely examined. Optical elements, including lenses, mirrors, prisms, classical and Fabry-Perot interferometers, resonant cavities, multilayer dielectric structures, interference and spatial filters, diffraction gratings, polarizers, and birefringent plates, are treated in depth. The coverage also encompasses such seldom-covered topics as modeling of general astigmatism via 4x4 matrices, FFT-based numerical methods, and bianisotropy, with a relativistic treatment of optical activity and the Faraday and Fresnel-Fizeau effects. Finally, the history of optics is discussed.


Introduction to Optics

Introduction to Optics

Author: Nkoma, John S.

Publisher: Mkuki na Nyota Publishers

Published: 2019-05-22

Total Pages: 266

ISBN-13: 9987083714

DOWNLOAD EBOOK

The book introduces university undergraduates to the fascinating world of the science of light. Contemporary physics programmes are under increasing pressure to provide a balance between coverage of several traditional branches of physics and to expose students to emerging research areas. It is therefore important to provide an in depth introduction to some branches of physics, such as optics, to students who may not become professional physicists but will need physics in their chosen professions. Some Universities offer optics as semester courses while others offer it as modules within general physics courses in the degree programme. The book meets the needs of both approaches. Optics has three major branches: Geometrical optics, Physical optics and Quantum optics. Chapter 1 is about the nature of light. Geometrical optics is covered in chapters 2 to 5, Physical optics in chapters 6 to 8, and Quantum optics in chapter 9, and lays a foundation for advanced courses in applied quantum optics. The language of physics is universal, and the book is suited to students globally. However, the book recognises certain peculiarities in Africa, and is written to meet the specific needs of students in African Universities. Some students come from well equipped schools while other students come from less well equipped schools. These two groups of students attending the same course have different needs. The well prepared students need challenge, while the others need to be taught in fair detail. The book has therefore detailed discussions and explanations of difficult-to-grasp topics with the help of simple but clearly drawn and labeled diagrams. The discussions and conclusions are presented pointwise, and key words, definitions, laws, etc., are highlighted. There are a large number of problems and exercises at the end of each chapter.


Modern Geometrical Optics

Modern Geometrical Optics

Author: Richard Ditteon

Publisher: Wiley-Interscience

Published: 1997-11-03

Total Pages: 0

ISBN-13: 9780471169222

DOWNLOAD EBOOK

From basic terms and concepts to advanced optimization techniques-a complete, practical introduction to modern geometrical optics Most books on geometrical optics present only matrix methods. Modern Geometrical Optics, although it covers matrix methods, emphasizes y-nu ray tracing methods, which are used most commonly by optical engineers and are easier to adapt to third-order optics and y-??? diagrams. Moving by logical degrees from fundamental principles to advanced optical analysis and design methods, this book bridges the gap between the optical theory taught in introductory physics texts and advanced books on lens design. Providing the background material needed to understand advanced material, it covers important topics such as field of view, stops, pupils and windows, exact ray tracing, image quality, and optimization of the image. Important features of Modern Geometrical Optics include: * Examples of all important techniques presented * Extensive problem sets in each chapter * Optical analysis and design software * Chapters covering y-??? diagrams, optimization, and lens design This book is both a primer for professionals called upon to design optical systems and an ideal text for courses in modern geometrical optics. Companion Software Special lens design and analysis software capable of solving all problems presented in the book is available via Wiley's FTP site. This software also serves as an introduction to the use of commercial lens design software. Appendix C is a user's manual for the software.