Geometric Perturbation Theory in Physics

Geometric Perturbation Theory in Physics

Author: Stephen Malvern Omohundro

Publisher: World Scientific

Published: 1986

Total Pages: 594

ISBN-13: 9789971501365

DOWNLOAD EBOOK

This book which focusses on mechanics, waves and statistics, describes recent developments in the application of differential geometry, particularly symplectic geometry, to the foundations of broad areas of physics. Throughout the book, intuitive descriptions and diagrams are used to elucidate the mathematical theory. It develops a coordinate-free framework for perturbation theory and uses this to show how underlying symplectic structures arise from physical asymptotes. It describes a remarkable parity between classical mechanics which arises asymptotically from quantum mechanics and classical thermodynamics which arises asymptotically from statistical mechanics. Included here is a section with one hundred unanswered questions for further research.


Differential Geometric Methods in Theoretical Physics

Differential Geometric Methods in Theoretical Physics

Author: Ling-Lie Chau

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 795

ISBN-13: 1468491482

DOWNLOAD EBOOK

After several decades of reduced contact, the interaction between physicists and mathematicians in the front-line research of both fields recently became deep and fruit ful again. Many of the leading specialists of both fields became involved in this devel opment. This process even led to the discovery of previously unsuspected connections between various subfields of physics and mathematics. In mathematics this concerns in particular knots von Neumann algebras, Kac-Moody algebras, integrable non-linear partial differential equations, and differential geometry in low dimensions, most im portantly in three and four dimensional spaces. In physics it concerns gravity, string theory, integrable classical and quantum field theories, solitons and the statistical me chanics of surfaces. New discoveries in these fields are made at a rapid pace. This conference brought together active researchers in these areas, reporting their results and discussing with other participants to further develop thoughts in future new directions. The conference was attended by SO participants from 15 nations. These proceedings document the program and the talks at the conference. This conference was preceded by a two-week summer school. Ten lecturers gave extended lectures on related topics. The proceedings of the school will also be published in the NATO-AS[ volume by Plenum. The Editors vii ACKNOWLEDGMENTS We would like to thank the many people who have made the conference a success. Furthermore, ·we appreciate the excellent talks. The active participation of everyone present made the conference lively and stimulating. All of this made our efforts worth while.


Introduction to Geometry of Manifolds with Symmetry

Introduction to Geometry of Manifolds with Symmetry

Author: V.V. Trofimov

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 339

ISBN-13: 9401719616

DOWNLOAD EBOOK

One ofthe most important features of the development of physical and mathematical sciences in the beginning of the 20th century was the demolition of prevailing views of the three-dimensional Euclidean space as the only possible mathematical description of real physical space. Apriorization of geometrical notions and identification of physical 3 space with its mathematical modellR were characteristic for these views. The discovery of non-Euclidean geometries led mathematicians to the understanding that Euclidean geometry is nothing more than one of many logically admissible geometrical systems. Relativity theory amended our understanding of the problem of space by amalgamating space and time into an integral four-dimensional manifold. One of the most important problems, lying at the crossroad of natural sciences and philosophy is the problem of the structure of the world as a whole. There are a lot of possibilities for the topology offour dimensional space-time, and at first sight a lot of possibilities arise in cosmology. In principle, not only can the global topology of the universe be complicated, but also smaller scale topological structures can be very nontrivial. One can imagine two "usual" spaces connected with a "throat", making the topology of the union complicated.


Geometry and Theoretical Physics

Geometry and Theoretical Physics

Author: Joachim Debrus

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 333

ISBN-13: 3642763537

DOWNLOAD EBOOK

The interaction between geometry and theoretical physics has often been very fruitful. A highlight in this century was Einstein's creation of the theory of general relativity. Equally impressive was the recognition, starting from the work of Yang and Mills and culminating in the Weinberg-Salam theory of the electroweak interaction and quantum chromodynamics, that the fundamental interactions of elementary particles are governed by gauge fields, which in ma thematical terms are connections in principal fibre bundles. Theoretical physi cists became increasingly aware of the fact that the use of modern mathematical methods may be necessary in the treatment of problems of physical interest. Since some of these topics are covered at most summarily in the usual curricu lum, there is a need for extra-curricular efforts to provide an opportunity for learning these techniques and their physical applications. In this context we arranged a meeting at the Physikzentrum Bad Ronnef 12-16 February 1990 on the subject "Geometry and Theoretical Physics", in the series of physics schools organized by the German Physical Society. The participants were graduate students from German universities and research institutes. Since the meeting occurred only a short time after freedom of travel between East and West Germany became a reality, this was for many from the East the first opportunity to attend a scientific meeting in the West, and for many from the West the first chance to become personally acquainted with colleagues from the East.


Applied Differential Geometry

Applied Differential Geometry

Author: Vladimir G. Ivancevic

Publisher: World Scientific

Published: 2007

Total Pages: 1346

ISBN-13: 9812706143

DOWNLOAD EBOOK

This graduate-level monographic textbook treats applied differential geometry from a modern scientific perspective. Co-authored by the originator of the world's leading human motion simulator ? ?Human Biodynamics Engine?, a complex, 264-DOF bio-mechanical system, modeled by differential-geometric tools ? this is the first book that combines modern differential geometry with a wide spectrum of applications, from modern mechanics and physics, via nonlinear control, to biology and human sciences. The book is designed for a two-semester course, which gives mathematicians a variety of applications for their theory and physicists, as well as other scientists and engineers, a strong theory underlying their models.


Topics in Physical Mathematics

Topics in Physical Mathematics

Author: Kishore Marathe

Publisher: Springer Science & Business Media

Published: 2010-08-09

Total Pages: 458

ISBN-13: 1848829396

DOWNLOAD EBOOK

As many readers will know, the 20th century was a time when the fields of mathematics and the sciences were seen as two separate entities. Caused by the rapid growth of the physical sciences and an increasing abstraction in mathematical research, each party, physicists and mathematicians alike, suffered a misconception; not only of the opposition’s theoretical underpinning, but of how the two subjects could be intertwined and effectively utilized. One sub-discipline that played a part in the union of the two subjects is Theoretical Physics. Breaking it down further came the fundamental theories, Relativity and Quantum theory, and later on Yang-Mills theory. Other areas to emerge in this area are those derived from the works of Donaldson, Chern-Simons, Floer-Fukaya, and Seiberg-Witten. Aimed at a wide audience, Physical Topics in Mathematics demonstrates how various physical theories have played a crucial role in the developments of Mathematics and in particular, Geometric Topology. Issues are studied in great detail, and the book steadfastly covers the background of both Mathematics and Theoretical Physics in an effort to bring the reader to a deeper understanding of their interaction. Whilst the world of Theoretical Physics and Mathematics is boundless; it is not the intention of this book to cover its enormity. Instead, it seeks to lead the reader through the world of Physical Mathematics; leaving them with a choice of which realm they wish to visit next.


Geometric Numerical Integration

Geometric Numerical Integration

Author: Ernst Hairer

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 526

ISBN-13: 3662050188

DOWNLOAD EBOOK

This book deals with numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by numerous figures, treats applications from physics and astronomy, and contains many numerical experiments and comparisons of different approaches.


Geometric Algebra for Physicists

Geometric Algebra for Physicists

Author: Chris Doran

Publisher: Cambridge University Press

Published: 2007-11-22

Total Pages: 647

ISBN-13: 1139643142

DOWNLOAD EBOOK

Geometric algebra is a powerful mathematical language with applications across a range of subjects in physics and engineering. This book is a complete guide to the current state of the subject with early chapters providing a self-contained introduction to geometric algebra. Topics covered include new techniques for handling rotations in arbitrary dimensions, and the links between rotations, bivectors and the structure of the Lie groups. Following chapters extend the concept of a complex analytic function theory to arbitrary dimensions, with applications in quantum theory and electromagnetism. Later chapters cover advanced topics such as non-Euclidean geometry, quantum entanglement, and gauge theories. Applications such as black holes and cosmic strings are also explored. It can be used as a graduate text for courses on the physical applications of geometric algebra and is also suitable for researchers working in the fields of relativity and quantum theory.