Geometric Mechanics and Symmetry

Geometric Mechanics and Symmetry

Author: Darryl D. Holm

Publisher: Oxford University Press

Published: 2009-07-30

Total Pages: 537

ISBN-13: 0199212902

DOWNLOAD EBOOK

A graduate level text based partly on lectures in geometry, mechanics, and symmetry given at Imperial College London, this book links traditional classical mechanics texts and advanced modern mathematical treatments of the subject.


Geometric Formulation of Classical and Quantum Mechanics

Geometric Formulation of Classical and Quantum Mechanics

Author: G. Giachetta

Publisher: World Scientific

Published: 2011

Total Pages: 405

ISBN-13: 9814313726

DOWNLOAD EBOOK

The geometric formulation of autonomous Hamiltonian mechanics in the terms of symplectic and Poisson manifolds is generally accepted. This book provides the geometric formulation of non-autonomous mechanics in a general setting of time-dependent coordinate and reference frame transformations.


Geometric Mechanics on Riemannian Manifolds

Geometric Mechanics on Riemannian Manifolds

Author: Ovidiu Calin

Publisher: Springer Science & Business Media

Published: 2006-03-15

Total Pages: 285

ISBN-13: 0817644210

DOWNLOAD EBOOK

* A geometric approach to problems in physics, many of which cannot be solved by any other methods * Text is enriched with good examples and exercises at the end of every chapter * Fine for a course or seminar directed at grad and adv. undergrad students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics


Geometric Phases in Classical and Quantum Mechanics

Geometric Phases in Classical and Quantum Mechanics

Author: Dariusz Chruscinski

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 346

ISBN-13: 0817681760

DOWNLOAD EBOOK

Several well-established geometric and topological methods are used in this work in an application to a beautiful physical phenomenon known as the geometric phase. This book examines the geometric phase, bringing together different physical phenomena under a unified mathematical scheme. The material is presented so that graduate students and researchers in applied mathematics and physics with an understanding of classical and quantum mechanics can handle the text.


Geometric Mechanics

Geometric Mechanics

Author: Waldyr M. Oliva

Publisher: Springer Science & Business Media

Published: 2002-10-23

Total Pages: 292

ISBN-13: 9783540442424

DOWNLOAD EBOOK

Geometric Mechanics here means mechanics on a pseudo-riemannian manifold and the main goal is the study of some mechanical models and concepts, with emphasis on the intrinsic and geometric aspects arising in classical problems. The first seven chapters are written in the spirit of Newtonian Mechanics while the last two ones as well as two of the four appendices describe the foundations and some aspects of Special and General Relativity. All the material has a coordinate free presentation but, for the sake of motivation, many examples and exercises are included in order to exhibit the desirable flavor of physical applications.


Geometric Control Theory

Geometric Control Theory

Author: Velimir Jurdjevic

Publisher: Cambridge University Press

Published: 1997

Total Pages: 516

ISBN-13: 0521495024

DOWNLOAD EBOOK

Geometric control theory is concerned with the evolution of systems subject to physical laws but having some degree of freedom through which motion is to be controlled. This book describes the mathematical theory inspired by the irreversible nature of time evolving events. The first part of the book deals with the issue of being able to steer the system from any point of departure to any desired destination. The second part deals with optimal control, the question of finding the best possible course. An overlap with mathematical physics is demonstrated by the Maximum principle, a fundamental principle of optimality arising from geometric control, which is applied to time-evolving systems governed by physics as well as to man-made systems governed by controls. Applications are drawn from geometry, mechanics, and control of dynamical systems. The geometric language in which the results are expressed allows clear visual interpretations and makes the book accessible to physicists and engineers as well as to mathematicians.


Dynamical Systems and Geometric Mechanics

Dynamical Systems and Geometric Mechanics

Author: Jared Maruskin

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-08-21

Total Pages: 350

ISBN-13: 3110597802

DOWNLOAD EBOOK

Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explore similar systems that instead evolve on differentiable manifolds. The first part discusses the linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, Poincaré maps, Floquet theory, the Poincaré-Bendixson theorem, bifurcations, and chaos. The second part of the book begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms.


Geometric Control of Mechanical Systems

Geometric Control of Mechanical Systems

Author: Francesco Bullo

Publisher: Springer

Published: 2019-06-12

Total Pages: 741

ISBN-13: 1489972765

DOWNLOAD EBOOK

The area of analysis and control of mechanical systems using differential geometry is flourishing. This book collects many results over the last decade and provides a comprehensive introduction to the area.


Hamiltonian Mechanical Systems and Geometric Quantization

Hamiltonian Mechanical Systems and Geometric Quantization

Author: Mircea Puta

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 289

ISBN-13: 9401119929

DOWNLOAD EBOOK

This volume presents various aspects of the geometry of symplectic and Poisson manifolds, and applications in Hamiltonian mechanics and geometric quantization are indicated. Chapter 1 presents some general facts about symplectic vector space, symplectic manifolds and symplectic reduction. Chapter 2 deals with the study of Hamiltonian mechanics. Chapter 3 considers some standard facts concerning Lie groups and algebras which lead to the theory of momentum mappings and the Marsden--Weinstein reduction. Chapters 4 and 5 consider the theory and the stability of equilibrium solutions of Hamilton--Poisson mechanical systems. Chapters 6 and 7 are devoted to the theory of geometric quantization. This leads, in Chapter 8, to topics such as foliated cohomology, the theory of the Dolbeault--Kostant complex, and their applications. A discussion of the relation between geometric quantization and the Marsden--Weinstein reduction is presented in Chapter 9. The final chapter considers extending the theory of geometric quantization to Poisson manifolds, via the theory of symplectic groupoids. Each chapter concludes with problems and solutions, many of which present significant applications and, in some cases, major theorems. For graduate students and researchers whose interests and work involve symplectic geometry and Hamiltonian mechanics.


Geometric Mechanics - Part I: Dynamics And Symmetry (2nd Edition)

Geometric Mechanics - Part I: Dynamics And Symmetry (2nd Edition)

Author: Darryl D Holm

Publisher: World Scientific Publishing Company

Published: 2011-07-13

Total Pages: 466

ISBN-13: 1911298658

DOWNLOAD EBOOK

See also GEOMETRIC MECHANICS — Part II: Rotating, Translating and Rolling (2nd Edition) This textbook introduces the tools and language of modern geometric mechanics to advanced undergraduates and beginning graduate students in mathematics, physics and engineering. It treats the fundamental problems of dynamical systems from the viewpoint of Lie group symmetry in variational principles. The only prerequisites are linear algebra, calculus and some familiarity with Hamilton's principle and canonical Poisson brackets in classical mechanics at the beginning undergraduate level.The ideas and concepts of geometric mechanics are explained in the context of explicit examples. Through these examples, the student develops skills in performing computational manipulations, starting from Fermat's principle, working through the theory of differential forms on manifolds and transferring these ideas to the applications of reduction by symmetry to reveal Lie-Poisson Hamiltonian formulations and momentum maps in physical applications.The many Exercises and Worked Answers in the text enable the student to grasp the essential aspects of the subject. In addition, the modern language and application of differential forms is explained in the context of geometric mechanics, so that the importance of Lie derivatives and their flows is clear. All theorems are stated and proved explicitly.The organisation of the first edition has been preserved in the second edition. However, the substance of the text has been rewritten throughout to improve the flow and to enrich the development of the material. In particular, the role of Noether's theorem about the implications of Lie group symmetries for conservation laws of dynamical systems has been emphasised throughout, with many applications./a