Geometric Mechanics and Symmetry

Geometric Mechanics and Symmetry

Author: Darryl D. Holm

Publisher: Oxford University Press

Published: 2009-07-30

Total Pages: 537

ISBN-13: 0199212902

DOWNLOAD EBOOK

A graduate level text based partly on lectures in geometry, mechanics, and symmetry given at Imperial College London, this book links traditional classical mechanics texts and advanced modern mathematical treatments of the subject.


Geometric Mechanics on Riemannian Manifolds

Geometric Mechanics on Riemannian Manifolds

Author: Ovidiu Calin

Publisher: Springer Science & Business Media

Published: 2006-03-15

Total Pages: 285

ISBN-13: 0817644210

DOWNLOAD EBOOK

* A geometric approach to problems in physics, many of which cannot be solved by any other methods * Text is enriched with good examples and exercises at the end of every chapter * Fine for a course or seminar directed at grad and adv. undergrad students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics


Dynamical Systems and Geometric Mechanics

Dynamical Systems and Geometric Mechanics

Author: Jared Maruskin

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-08-21

Total Pages: 350

ISBN-13: 3110597802

DOWNLOAD EBOOK

Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explore similar systems that instead evolve on differentiable manifolds. The first part discusses the linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, Poincaré maps, Floquet theory, the Poincaré-Bendixson theorem, bifurcations, and chaos. The second part of the book begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms.


Geometric Phases in Classical and Quantum Mechanics

Geometric Phases in Classical and Quantum Mechanics

Author: Dariusz Chruscinski

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 346

ISBN-13: 0817681760

DOWNLOAD EBOOK

Several well-established geometric and topological methods are used in this work in an application to a beautiful physical phenomenon known as the geometric phase. This book examines the geometric phase, bringing together different physical phenomena under a unified mathematical scheme. The material is presented so that graduate students and researchers in applied mathematics and physics with an understanding of classical and quantum mechanics can handle the text.


Geometric Control of Mechanical Systems

Geometric Control of Mechanical Systems

Author: Francesco Bullo

Publisher: Springer

Published: 2019-06-12

Total Pages: 727

ISBN-13: 1489972765

DOWNLOAD EBOOK

The area of analysis and control of mechanical systems using differential geometry is flourishing. This book collects many results over the last decade and provides a comprehensive introduction to the area.


Geometric Formulation of Classical and Quantum Mechanics

Geometric Formulation of Classical and Quantum Mechanics

Author: G. Giachetta

Publisher: World Scientific

Published: 2011

Total Pages: 405

ISBN-13: 9814313726

DOWNLOAD EBOOK

The geometric formulation of autonomous Hamiltonian mechanics in the terms of symplectic and Poisson manifolds is generally accepted. This book provides the geometric formulation of non-autonomous mechanics in a general setting of time-dependent coordinate and reference frame transformations.


Geometric Mechanics

Geometric Mechanics

Author: Richard Talman

Publisher: Wiley-VCH

Published: 2000

Total Pages: 592

ISBN-13:

DOWNLOAD EBOOK

Not just another book on mechanics, Geometric Mechanics sets itself apart in important ways. It offers a modern treatment of classical mechanics, including material on relativistic physics, chaos theory, and nonlinear dynamics in addition to standard topics.


Geometrical Foundations of Continuum Mechanics

Geometrical Foundations of Continuum Mechanics

Author: Paul Steinmann

Publisher: Springer

Published: 2015-03-25

Total Pages: 534

ISBN-13: 3662464608

DOWNLOAD EBOOK

This book illustrates the deep roots of the geometrically nonlinear kinematics of generalized continuum mechanics in differential geometry. Besides applications to first- order elasticity and elasto-plasticity an appreciation thereof is particularly illuminating for generalized models of continuum mechanics such as second-order (gradient-type) elasticity and elasto-plasticity. After a motivation that arises from considering geometrically linear first- and second- order crystal plasticity in Part I several concepts from differential geometry, relevant for what follows, such as connection, parallel transport, torsion, curvature, and metric for holonomic and anholonomic coordinate transformations are reiterated in Part II. Then, in Part III, the kinematics of geometrically nonlinear continuum mechanics are considered. There various concepts of differential geometry, in particular aspects related to compatibility, are generically applied to the kinematics of first- and second- order geometrically nonlinear continuum mechanics. Together with the discussion on the integrability conditions for the distortions and double-distortions, the concepts of dislocation, disclination and point-defect density tensors are introduced. For concreteness, after touching on nonlinear fir st- and second-order elasticity, a detailed discussion of the kinematics of (multiplicative) first- and second-order elasto-plasticity is given. The discussion naturally culminates in a comprehensive set of different types of dislocation, disclination and point-defect density tensors. It is argued, that these can potentially be used to model densities of geometrically necessary defects and the accompanying hardening in crystalline materials. Eventually Part IV summarizes the above findings on integrability whereby distinction is made between the straightforward conditions for the distortion and the double-distortion being integrable and the more involved conditions for the strain (metric) and the double-strain (connection) being integrable. The book addresses readers with an interest in continuum modelling of solids from engineering and the sciences alike, whereby a sound knowledge of tensor calculus and continuum mechanics is required as a prerequisite.


Geometric Mechanics

Geometric Mechanics

Author: Waldyr M. Oliva

Publisher: Springer Science & Business Media

Published: 2002-10-23

Total Pages: 292

ISBN-13: 9783540442424

DOWNLOAD EBOOK

Geometric Mechanics here means mechanics on a pseudo-riemannian manifold and the main goal is the study of some mechanical models and concepts, with emphasis on the intrinsic and geometric aspects arising in classical problems. The first seven chapters are written in the spirit of Newtonian Mechanics while the last two ones as well as two of the four appendices describe the foundations and some aspects of Special and General Relativity. All the material has a coordinate free presentation but, for the sake of motivation, many examples and exercises are included in order to exhibit the desirable flavor of physical applications.


Geometric Mechanics and Its Applications

Geometric Mechanics and Its Applications

Author: Weipeng Hu

Publisher: Springer Nature

Published: 2023-01-01

Total Pages: 540

ISBN-13: 9811974357

DOWNLOAD EBOOK

To make the content of the book more systematic, this book mainly briefs some related basic knowledge reported by other monographs and papers about geometric mechanics. The main content of this book is based on the last 20 years’ jobs of the authors. All physical processes can be formulated as the Hamiltonian form with the energy conservation law as well as the symplectic structure if all dissipative effects are ignored. On the one hand, the important status of the Hamiltonian mechanics is emphasized. On the other hand, a higher requirement is proposed for the numerical analysis on the Hamiltonian system, namely the results of the numerical analysis on the Hamiltonian system should reproduce the geometric properties of which, including the first integral, the symplectic structure as well as the energy conservation law.