Geometric Integrators for Differential Equations with Highly Oscillatory Solutions

Geometric Integrators for Differential Equations with Highly Oscillatory Solutions

Author: Xinyuan Wu

Publisher: Springer Nature

Published: 2021-09-28

Total Pages: 507

ISBN-13: 981160147X

DOWNLOAD EBOOK

The idea of structure-preserving algorithms appeared in the 1980's. The new paradigm brought many innovative changes. The new paradigm wanted to identify the long-time behaviour of the solutions or the existence of conservation laws or some other qualitative feature of the dynamics. Another area that has kept growing in importance within Geometric Numerical Integration is the study of highly-oscillatory problems: problems where the solutions are periodic or quasiperiodic and have to be studied in time intervals that include an extremely large number of periods. As is known, these equations cannot be solved efficiently using conventional methods. A further study of novel geometric integrators has become increasingly important in recent years. The objective of this monograph is to explore further geometric integrators for highly oscillatory problems that can be formulated as systems of ordinary and partial differential equations. Facing challenging scientific computational problems, this book presents some new perspectives of the subject matter based on theoretical derivations and mathematical analysis, and provides high-performance numerical simulations. In order to show the long-time numerical behaviour of the simulation, all the integrators presented in this monograph have been tested and verified on highly oscillatory systems from a wide range of applications in the field of science and engineering. They are more efficient than existing schemes in the literature for differential equations that have highly oscillatory solutions. This book is useful to researchers, teachers, students and engineers who are interested in Geometric Integrators and their long-time behaviour analysis for differential equations with highly oscillatory solutions.


Geometric Numerical Integration

Geometric Numerical Integration

Author: Ernst Hairer

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 526

ISBN-13: 3662050188

DOWNLOAD EBOOK

This book deals with numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by numerous figures, treats applications from physics and astronomy, and contains many numerical experiments and comparisons of different approaches.


Simulating Hamiltonian Dynamics

Simulating Hamiltonian Dynamics

Author: Benedict Leimkuhler

Publisher: Cambridge University Press

Published: 2004

Total Pages: 464

ISBN-13: 9780521772907

DOWNLOAD EBOOK

Geometric integrators are time-stepping methods, designed such that they exactly satisfy conservation laws, symmetries or symplectic properties of a system of differential equations. In this book the authors outline the principles of geometric integration and demonstrate how they can be applied to provide efficient numerical methods for simulating conservative models. Beginning from basic principles and continuing with discussions regarding the advantageous properties of such schemes, the book introduces methods for the N-body problem, systems with holonomic constraints, and rigid bodies. More advanced topics treated include high-order and variable stepsize methods, schemes for treating problems involving multiple time-scales, and applications to molecular dynamics and partial differential equations. The emphasis is on providing a unified theoretical framework as well as a practical guide for users. The inclusion of examples, background material and exercises enhance the usefulness of the book for self-instruction or as a text for a graduate course on the subject.


A First Course in the Numerical Analysis of Differential Equations

A First Course in the Numerical Analysis of Differential Equations

Author: A. Iserles

Publisher: Cambridge University Press

Published: 2009

Total Pages: 481

ISBN-13: 0521734908

DOWNLOAD EBOOK

lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.


Highly Oscillatory Problems

Highly Oscillatory Problems

Author: Bjorn Engquist

Publisher: Cambridge University Press

Published: 2009-07-02

Total Pages: 254

ISBN-13: 0521134439

DOWNLOAD EBOOK

Review papers from experts in areas of active research into highly oscillatory problems, with an emphasis on computation.


Computing Highly Oscillatory Integrals

Computing Highly Oscillatory Integrals

Author: Alfredo Deano

Publisher: SIAM

Published: 2018-01-01

Total Pages: 207

ISBN-13: 1611975123

DOWNLOAD EBOOK

Highly oscillatory phenomena range across numerous areas in science and engineering and their computation represents a difficult challenge. A case in point is integrals of rapidly oscillating functions in one or more variables. The quadrature of such integrals has been historically considered very demanding. Research in the past 15 years (in which the authors played a major role) resulted in a range of very effective and affordable algorithms for highly oscillatory quadrature. This is the only monograph bringing together the new body of ideas in this area in its entirety. The starting point is that approximations need to be analyzed using asymptotic methods rather than by more standard polynomial expansions. As often happens in computational mathematics, once a phenomenon is understood from a mathematical standpoint, effective algorithms follow. As reviewed in this monograph, we now have at our disposal a number of very effective quadrature methods for highly oscillatory integrals--Filon-type and Levin-type methods, methods based on steepest descent, and complex-valued Gaussian quadrature. Their understanding calls for a fairly varied mathematical toolbox--from classical numerical analysis, approximation theory, and theory of orthogonal polynomials all the way to asymptotic analysis--yet this understanding is the cornerstone of efficient algorithms.


Applied Stochastic Differential Equations

Applied Stochastic Differential Equations

Author: Simo Särkkä

Publisher: Cambridge University Press

Published: 2019-05-02

Total Pages: 327

ISBN-13: 1316510085

DOWNLOAD EBOOK

With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.


Certified Reduced Basis Methods for Parametrized Partial Differential Equations

Certified Reduced Basis Methods for Parametrized Partial Differential Equations

Author: Jan S Hesthaven

Publisher: Springer

Published: 2015-08-20

Total Pages: 139

ISBN-13: 3319224700

DOWNLOAD EBOOK

This book provides a thorough introduction to the mathematical and algorithmic aspects of certified reduced basis methods for parametrized partial differential equations. Central aspects ranging from model construction, error estimation and computational efficiency to empirical interpolation methods are discussed in detail for coercive problems. More advanced aspects associated with time-dependent problems, non-compliant and non-coercive problems and applications with geometric variation are also discussed as examples.


A Concise Introduction to Geometric Numerical Integration

A Concise Introduction to Geometric Numerical Integration

Author: Sergio Blanes

Publisher: CRC Press

Published: 2017-11-22

Total Pages: 287

ISBN-13: 1315354861

DOWNLOAD EBOOK

Discover How Geometric Integrators Preserve the Main Qualitative Properties of Continuous Dynamical Systems A Concise Introduction to Geometric Numerical Integration presents the main themes, techniques, and applications of geometric integrators for researchers in mathematics, physics, astronomy, and chemistry who are already familiar with numerical tools for solving differential equations. It also offers a bridge from traditional training in the numerical analysis of differential equations to understanding recent, advanced research literature on numerical geometric integration. The book first examines high-order classical integration methods from the structure preservation point of view. It then illustrates how to construct high-order integrators via the composition of basic low-order methods and analyzes the idea of splitting. It next reviews symplectic integrators constructed directly from the theory of generating functions as well as the important category of variational integrators. The authors also explain the relationship between the preservation of the geometric properties of a numerical method and the observed favorable error propagation in long-time integration. The book concludes with an analysis of the applicability of splitting and composition methods to certain classes of partial differential equations, such as the Schrödinger equation and other evolution equations. The motivation of geometric numerical integration is not only to develop numerical methods with improved qualitative behavior but also to provide more accurate long-time integration results than those obtained by general-purpose algorithms. Accessible to researchers and post-graduate students from diverse backgrounds, this introductory book gets readers up to speed on the ideas, methods, and applications of this field. Readers can reproduce the figures and results given in the text using the MATLAB® programs and model files available online.