Nonholonomic Mechanics and Control

Nonholonomic Mechanics and Control

Author: A.M. Bloch

Publisher: Springer Science & Business Media

Published: 2007-09-27

Total Pages: 501

ISBN-13: 0387955356

DOWNLOAD EBOOK

This book explores connections between control theory and geometric mechanics. The author links control theory with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations, and in particular with the theory of mechanical systems subject to motion constraints. The synthesis is appropriate as there is a rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems that incorporates material not available in other recent texts. The book benefits graduate students and researchers in the area who want to enhance their understanding and enhance their techniques.


Nonholonomic Mechanics and Control

Nonholonomic Mechanics and Control

Author: A.M. Bloch

Publisher: Springer

Published: 2015-11-05

Total Pages: 582

ISBN-13: 1493930176

DOWNLOAD EBOOK

This book explores connections between control theory and geometric mechanics. The author links control theory with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations, and in particular with the theory of mechanical systems subject to motion constraints. The synthesis is appropriate as there is a rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems that incorporates material not available in other recent texts. The book benefits graduate students and researchers in the area who want to enhance their understanding and enhance their techniques.


Geometric, Control and Numerical Aspects of Nonholonomic Systems

Geometric, Control and Numerical Aspects of Nonholonomic Systems

Author: Jorge Cortés Monforte

Publisher: Springer

Published: 2004-10-19

Total Pages: 235

ISBN-13: 3540457305

DOWNLOAD EBOOK

Nonholonomic systems are a widespread topic in several scientific and commercial domains, including robotics, locomotion and space exploration. This work sheds new light on this interdisciplinary character through the investigation of a variety of aspects coming from several disciplines. The main aim is to illustrate the idea that a better understanding of the geometric structures of mechanical systems unveils new and unknown aspects to them, and helps both analysis and design to solve standing problems and identify new challenges. In this way, separate areas of research such as Classical Mechanics, Differential Geometry, Numerical Analysis or Control Theory are brought together in this study of nonholonomic systems.


Geometric Control and Non-holonomic Mechanics

Geometric Control and Non-holonomic Mechanics

Author: Velimir Jurdjevic

Publisher: American Mathematical Soc.

Published: 1998

Total Pages: 256

ISBN-13: 9780821807958

DOWNLOAD EBOOK

Control theory, a synthesis of geometric theory of differential equations enriched with variational principles and the associated symplectic geometry, emerges as a new mathematical subject of interest to engineers, mathematicians, and physicists. This collection of articles focuses on several distinctive research directions having origins in mechanics and differential geometry, but driven by modern control theory. The first of these directions deals with the singularities of small balls for problems of sub-Riemannian geomtery and provides a generic classification of singularities for two-dimensional distributions of contact type in a three-dimensional ambient space. The second direction deals with invariant optimal problems on Lie groups exemplified through the problem of Dublins extended to symmetric spaces, the elastic problem of Kirchhoff and its relation to the heavy top. The results described in the book are explicit and demonstrate convincingly the power of geometric formalism. The remaining directions deal with the geometric nature of feedback analysed through the language of fiber bundles, and the connections of geometric control to non-holonomic problems in mechanics, as exemplified through the motions of a sphere on surfaces of revolution. This book provides quick access to new research directions in geometric control theory. It also demonstrates the effectiveness of new insights and methods that control theory brings to mechanics and geometry.


Analysis and Geometry in Control Theory and its Applications

Analysis and Geometry in Control Theory and its Applications

Author: Piernicola Bettiol

Publisher: Springer

Published: 2015-09-01

Total Pages: 242

ISBN-13: 3319069179

DOWNLOAD EBOOK

Since the 1950s control theory has established itself as a major mathematical discipline, particularly suitable for application in a number of research fields, including advanced engineering design, economics and the medical sciences. However, since its emergence, there has been a need to rethink and extend fields such as calculus of variations, differential geometry and nonsmooth analysis, which are closely tied to research on applications. Today control theory is a rich source of basic abstract problems arising from applications, and provides an important frame of reference for investigating purely mathematical issues. In many fields of mathematics, the huge and growing scope of activity has been accompanied by fragmentation into a multitude of narrow specialties. However, outstanding advances are often the result of the quest for unifying themes and a synthesis of different approaches. Control theory and its applications are no exception. Here, the interaction between analysis and geometry has played a crucial role in the evolution of the field. This book collects some recent results, highlighting geometrical and analytical aspects and the possible connections between them. Applications provide the background, in the classical spirit of mutual interplay between abstract theory and problem-solving practice.


Nonholonomic Motion Planning

Nonholonomic Motion Planning

Author: Zexiang Li

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 455

ISBN-13: 1461531764

DOWNLOAD EBOOK

Nonholonomic Motion Planning grew out of the workshop that took place at the 1991 IEEE International Conference on Robotics and Automation. It consists of contributed chapters representing new developments in this area. Contributors to the book include robotics engineers, nonlinear control experts, differential geometers and applied mathematicians. Nonholonomic Motion Planning is arranged into three chapter groups: Controllability: one of the key mathematical tools needed to study nonholonomic motion. Motion Planning for Mobile Robots: in this section the papers are focused on problems with nonholonomic velocity constraints as well as constraints on the generalized coordinates. Falling Cats, Space Robots and Gauge Theory: there are numerous connections to be made between symplectic geometry techniques for the study of holonomies in mechanics, gauge theory and control. In this section these connections are discussed using the backdrop of examples drawn from space robots and falling cats reorienting themselves. Nonholonomic Motion Planning can be used either as a reference for researchers working in the areas of robotics, nonlinear control and differential geometry, or as a textbook for a graduate level robotics or nonlinear control course.


Geometric Mechanics: Rotating, translating and rolling

Geometric Mechanics: Rotating, translating and rolling

Author: Darryl D. Holm

Publisher: Imperial College Press

Published: 2008

Total Pages: 311

ISBN-13: 1848161557

DOWNLOAD EBOOK

Introduces the tools and language of modern geometric mechanics to advanced undergraduate and beginning graduate students in mathematics, physics, and engineering. This book treats the dynamics of rotating, spinning and rolling rigid bodies from a geometric viewpoint, by formulating their solutions as coadjoint motions generated by Lie groups.


Kinematics and Dynamics of Multi-Body Systems

Kinematics and Dynamics of Multi-Body Systems

Author: J. Angeles

Publisher: Springer

Published: 2014-05-04

Total Pages: 344

ISBN-13: 3709143624

DOWNLOAD EBOOK

Three main disciplines in the area of multibody systems are covered: kinematics, dynamics, and control, as pertaining to systems that can be modelled as coupling or rigid bodies. The treatment is intended to give a state of the art of the topics discussed.


Nonholonomic Geometry, Mechanics and Control

Nonholonomic Geometry, Mechanics and Control

Author: Rui Yang

Publisher:

Published: 1992

Total Pages: 163

ISBN-13:

DOWNLOAD EBOOK

The motions of various mechanical systems which we wish to synthesize and control often have to satisfy certain kinds of restrictions imposed by the natural environment or the structure of the systems themselves. In mechanics, such restrictions are called constraints. Although the fundamental theory of mechanical systems with constraints was established and developed in the last century, recent research and developments in analytical mechanics and control theory from a geometric viewpoint have inspired a strong desire to reinterpret and reformulate the theory of constrained dynamics in an intrinsic geometric way. In addition, many practical problems in recent investigations in mechanical and electrical engineering, such as modeling and control of mobile robots and dextrons robotic hands, and the design and control of spacecraft, also show the need for a deeper understanding of the role that constraints play in mechanical systems.