Geometric Complexity Theory IV: Nonstandard Quantum Group for the Kronecker Problem

Geometric Complexity Theory IV: Nonstandard Quantum Group for the Kronecker Problem

Author: Jonah Blasiak

Publisher: American Mathematical Soc.

Published: 2015-04-09

Total Pages: 176

ISBN-13: 1470410117

DOWNLOAD EBOOK

The Kronecker coefficient is the multiplicity of the -irreducible in the restriction of the -irreducible via the natural map , where are -vector spaces and . A fundamental open problem in algebraic combinatorics is to find a positive combinatorial formula for these coefficients. The authors construct two quantum objects for this problem, which they call the nonstandard quantum group and nonstandard Hecke algebra. They show that the nonstandard quantum group has a compact real form and its representations are completely reducible, that the nonstandard Hecke algebra is semisimple, and that they satisfy an analog of quantum Schur-Weyl duality.


Geometry and Complexity Theory

Geometry and Complexity Theory

Author: J. M. Landsberg

Publisher: Cambridge University Press

Published: 2017-09-28

Total Pages: 353

ISBN-13: 110819141X

DOWNLOAD EBOOK

Two central problems in computer science are P vs NP and the complexity of matrix multiplication. The first is also a leading candidate for the greatest unsolved problem in mathematics. The second is of enormous practical and theoretical importance. Algebraic geometry and representation theory provide fertile ground for advancing work on these problems and others in complexity. This introduction to algebraic complexity theory for graduate students and researchers in computer science and mathematics features concrete examples that demonstrate the application of geometric techniques to real world problems. Written by a noted expert in the field, it offers numerous open questions to motivate future research. Complexity theory has rejuvenated classical geometric questions and brought different areas of mathematics together in new ways. This book will show the beautiful, interesting, and important questions that have arisen as a result.


Open Problems in Algebraic Combinatorics

Open Problems in Algebraic Combinatorics

Author: Christine Berkesch

Publisher: American Mathematical Society

Published: 2024-08-21

Total Pages: 382

ISBN-13: 147047333X

DOWNLOAD EBOOK

In their preface, the editors describe algebraic combinatorics as the area of combinatorics concerned with exact, as opposed to approximate, results and which puts emphasis on interaction with other areas of mathematics, such as algebra, topology, geometry, and physics. It is a vibrant area, which saw several major developments in recent years. The goal of the 2022 conference Open Problems in Algebraic Combinatorics 2022 was to provide a forum for exchanging promising new directions and ideas. The current volume includes contributions coming from the talks at the conference, as well as a few other contributions written specifically for this volume. The articles cover the majority of topics in algebraic combinatorics with the aim of presenting recent important research results and also important open problems and conjectures encountered in this research. The editors hope that this book will facilitate the exchange of ideas in algebraic combinatorics.


Recent Developments in Algebraic and Combinatorial Aspects of Representation Theory

Recent Developments in Algebraic and Combinatorial Aspects of Representation Theory

Author: Vyjayanthi Chari

Publisher: American Mathematical Soc.

Published: 2013-11-25

Total Pages: 222

ISBN-13: 0821890379

DOWNLOAD EBOOK

This volume contains the proceedings of the International Congress of Mathematicians Satellite Conference on Algebraic and Combinatorial Approaches to Representation Theory, held August 12-16, 2010, at the National Institute of Advanced Studies, Bangalore, India, and the follow-up conference held May 18-20, 2012, at the University of California, USA. It contains original research and survey articles on various topics in the theory of representations of Lie algebras, quantum groups and algebraic groups, including crystal bases, categorification, toroidal algebras and their generalisations, vertex algebras, Hecke algebras, Kazhdan-Lusztig bases, $q$-Schur algebras, and Weyl algebras.


Reduced Fusion Systems over 2-Groups of Sectional Rank at Most 4

Reduced Fusion Systems over 2-Groups of Sectional Rank at Most 4

Author: Bob Oliver

Publisher: American Mathematical Soc.

Published: 2016-01-25

Total Pages: 112

ISBN-13: 1470415488

DOWNLOAD EBOOK

The author classifies all reduced, indecomposable fusion systems over finite -groups of sectional rank at most . The resulting list is very similar to that by Gorenstein and Harada of all simple groups of sectional -rank at most . But this method of proof is very different from theirs, and is based on an analysis of the essential subgroups which can occur in the fusion systems.


Irreducible Geometric Subgroups of Classical Algebraic Groups

Irreducible Geometric Subgroups of Classical Algebraic Groups

Author: Timothy C. Burness,

Publisher: American Mathematical Soc.

Published: 2016-01-25

Total Pages: 100

ISBN-13: 1470414945

DOWNLOAD EBOOK

Let be a simple classical algebraic group over an algebraically closed field of characteristic with natural module . Let be a closed subgroup of and let be a non-trivial irreducible tensor-indecomposable -restricted rational -module such that the restriction of to is irreducible. In this paper the authors classify the triples of this form, where is a disconnected maximal positive-dimensional closed subgroup of preserving a natural geometric structure on .


Open Problems in Mathematics

Open Problems in Mathematics

Author: John Forbes Nash, Jr.

Publisher: Springer

Published: 2016-07-05

Total Pages: 547

ISBN-13: 3319321625

DOWNLOAD EBOOK

The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer science, and more. Extensive discussions surrounding the progress made for each problem are designed to reach a wide community of readers, from graduate students and established research mathematicians to physicists, computer scientists, economists, and research scientists who are looking to develop essential and modern new methods and theories to solve a variety of open problems.


Computational Invariant Theory

Computational Invariant Theory

Author: Harm Derksen

Publisher: Springer

Published: 2015-12-23

Total Pages: 387

ISBN-13: 3662484226

DOWNLOAD EBOOK

This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Gröbner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, covering fields as disparate as graph theory, coding theory, dynamical systems, and computer vision. The book is intended for postgraduate students as well as researchers in geometry, computer algebra, and, of course, invariant theory. The text is enriched with numerous explicit examples which illustrate the theory and should be of more than passing interest. More than ten years after the first publication of the book, the second edition now provides a major update and covers many recent developments in the field. Among the roughly 100 added pages there are two appendices, authored by Vladimi r Popov, and an addendum by Norbert A'Campo and Vladimir Popov.


On the Differential Structure of Metric Measure Spaces and Applications

On the Differential Structure of Metric Measure Spaces and Applications

Author: Nicola Gigli

Publisher: American Mathematical Soc.

Published: 2015-06-26

Total Pages: 104

ISBN-13: 1470414201

DOWNLOAD EBOOK

The main goals of this paper are: (i) To develop an abstract differential calculus on metric measure spaces by investigating the duality relations between differentials and gradients of Sobolev functions. This will be achieved without calling into play any sort of analysis in charts, our assumptions being: the metric space is complete and separable and the measure is Radon and non-negative. (ii) To employ these notions of calculus to provide, via integration by parts, a general definition of distributional Laplacian, thus giving a meaning to an expression like , where is a function and is a measure. (iii) To show that on spaces with Ricci curvature bounded from below and dimension bounded from above, the Laplacian of the distance function is always a measure and that this measure has the standard sharp comparison properties. This result requires an additional assumption on the space, which reduces to strict convexity of the norm in the case of smooth Finsler structures and is always satisfied on spaces with linear Laplacian, a situation which is analyzed in detail.


Deformation Quantization for Actions of Kahlerian Lie Groups

Deformation Quantization for Actions of Kahlerian Lie Groups

Author: Pierre Bieliavsky

Publisher: American Mathematical Soc.

Published: 2015-06-26

Total Pages: 166

ISBN-13: 1470414910

DOWNLOAD EBOOK

Let B be a Lie group admitting a left-invariant negatively curved Kählerian structure. Consider a strongly continuous action of B on a Fréchet algebra . Denote by the associated Fréchet algebra of smooth vectors for this action. In the Abelian case BR and isometric, Marc Rieffel proved that Weyl's operator symbol composition formula (the so called Moyal product) yields a deformation through Fréchet algebra structures R on . When is a -algebra, every deformed Fréchet algebra admits a compatible pre- -structure, hence yielding a deformation theory at the level of -algebras too. In this memoir, the authors prove both analogous statements for general negatively curved Kählerian groups. The construction relies on the one hand on combining a non-Abelian version of oscillatory integral on tempered Lie groups with geom,etrical objects coming from invariant WKB-quantization of solvable symplectic symmetric spaces, and, on the second hand, in establishing a non-Abelian version of the Calderón-Vaillancourt Theorem. In particular, the authors give an oscillating kernel formula for WKB-star products on symplectic symmetric spaces that fiber over an exponential Lie group.