Geometric Analysis of Quasilinear Inequalities on Complete Manifolds

Geometric Analysis of Quasilinear Inequalities on Complete Manifolds

Author: Bruno Bianchini

Publisher: Springer Nature

Published: 2021-01-18

Total Pages: 291

ISBN-13: 3030627047

DOWNLOAD EBOOK

This book demonstrates the influence of geometry on the qualitative behaviour of solutions of quasilinear PDEs on Riemannian manifolds. Motivated by examples arising, among others, from the theory of submanifolds, the authors study classes of coercive elliptic differential inequalities on domains of a manifold M with very general nonlinearities depending on the variable x, on the solution u and on its gradient. The book highlights the mean curvature operator and its variants, and investigates the validity of strong maximum principles, compact support principles and Liouville type theorems. In particular, it identifies sharp thresholds involving curvatures or volume growth of geodesic balls in M to guarantee the above properties under appropriate Keller-Osserman type conditions, which are investigated in detail throughout the book, and discusses the geometric reasons behind the existence of such thresholds. Further, the book also provides a unified review of recent results in the literature, and creates a bridge with geometry by studying the validity of weak and strong maximum principles at infinity, in the spirit of Omori-Yau’s Hessian and Laplacian principles and subsequent improvements.


Geometric and Functional Inequalities and Recent Topics in Nonlinear PDEs

Geometric and Functional Inequalities and Recent Topics in Nonlinear PDEs

Author: Emanuel Indrei

Publisher: American Mathematical Society

Published: 2023-01-09

Total Pages: 148

ISBN-13: 147046652X

DOWNLOAD EBOOK

This volume contains the proceedings of the virtual conference on Geometric and Functional Inequalities and Recent Topics in Nonlinear PDEs, held from February 28–March 1, 2021, and hosted by Purdue University, West Lafayette, IN. The mathematical content of this volume is at the intersection of viscosity theory, Fourier analysis, mass transport theory, fractional elliptic theory, and geometric analysis. The reader will encounter, among others, the following topics: the principal-agent problem; Maxwell's equations; Liouville-type theorems for fully nonlinear elliptic equations; a doubly monotone flow for constant width bodies; and the edge dislocations problem for crystals that describes the equilibrium configurations by a nonlocal fractional Laplacian equation.


The $AB$ Program in Geometric Analysis: Sharp Sobolev Inequalities and Related Problems

The $AB$ Program in Geometric Analysis: Sharp Sobolev Inequalities and Related Problems

Author: Olivier Druet

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 113

ISBN-13: 0821829890

DOWNLOAD EBOOK

Function theory and Sobolev inequalities have been the target of investigation for many years. Sharp constants in these inequalities constitute a critical tool in geometric analysis. The $AB$ programme is concerned with sharp Sobolev inequalities on compact Riemannian manifolds. This text summarizes the results of contemporary research and gives an up-to-date report on the field.


Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs

Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs

Author: Alexander Grigor'yan

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2021-01-18

Total Pages: 337

ISBN-13: 3110700859

DOWNLOAD EBOOK

The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.


Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities

Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities

Author: Emmanuel Hebey

Publisher: American Mathematical Soc.

Published: 2000-10-27

Total Pages: 306

ISBN-13: 0821827006

DOWNLOAD EBOOK

This volume offers an expanded version of lectures given at the Courant Institute on the theory of Sobolev spaces on Riemannian manifolds. ``Several surprising phenomena appear when studying Sobolev spaces on manifolds,'' according to the author. ``Questions that are elementary for Euclidean space become challenging and give rise to sophisticated mathematics, where the geometry of the manifold plays a central role.'' The volume is organized into nine chapters. Chapter 1 offers a brief introduction to differential and Riemannian geometry. Chapter 2 deals with the general theory of Sobolev spaces for compact manifolds. Chapter 3 presents the general theory of Sobolev spaces for complete, noncompact manifolds. Best constants problems for compact manifolds are discussed in Chapters 4 and 5. Chapter 6 presents special types of Sobolev inequalities under constraints. Best constants problems for complete noncompact manifolds are discussed in Chapter 7. Chapter 8 deals with Euclidean-type Sobolev inequalities. And Chapter 9 discusses the influence of symmetries on Sobolev embeddings. An appendix offers brief notes on the case of manifolds with boundaries. This topic is a field undergoing great development at this time. However, several important questions remain open. So a substantial part of the book is devoted to the concept of best constants, which appeared to be crucial for solving limiting cases of some classes of PDEs. The volume is highly self-contained. No familiarity is assumed with differentiable manifolds and Riemannian geometry, making the book accessible to a broad audience of readers, including graduate students and researchers.


Geometric Analysis

Geometric Analysis

Author: Jingyi Chen

Publisher: Springer Nature

Published: 2020-04-10

Total Pages: 616

ISBN-13: 3030349535

DOWNLOAD EBOOK

This edited volume has a two-fold purpose. First, comprehensive survey articles provide a way for beginners to ease into the corresponding sub-fields. These are then supplemented by original works that give the more advanced readers a glimpse of the current research in geometric analysis and related PDEs. The book is of significant interest for researchers, including advanced Ph.D. students, working in geometric analysis. Readers who have a secondary interest in geometric analysis will benefit from the survey articles. The results included in this book will stimulate further advances in the subjects: geometric analysis, including complex differential geometry, symplectic geometry, PDEs with a geometric origin, and geometry related to topology. Contributions by Claudio Arezzo, Alberto Della Vedova, Werner Ballmann, Henrik Matthiesen, Panagiotis Polymerakis, Sun-Yung A. Chang, Zheng-Chao Han, Paul Yang, Tobias Holck Colding, William P. Minicozzi II, Panagiotis Dimakis, Richard Melrose, Akito Futaki, Hajime Ono, Jiyuan Han, Jeff A. Viaclovsky, Bruce Kleiner, John Lott, Sławomir Kołodziej, Ngoc Cuong Nguyen, Chi Li, Yuchen Liu, Chenyang Xu, YanYan Li, Luc Nguyen, Bo Wang, Shiguang Ma, Jie Qing, Xiaonan Ma, Sean Timothy Paul, Kyriakos Sergiou, Tristan Rivière, Yanir A. Rubinstein, Natasa Sesum, Jian Song, Jeffrey Streets, Neil S. Trudinger, Yu Yuan, Weiping Zhang, Xiaohua Zhu and Aleksey Zinger.


Convex Analysis and Nonlinear Geometric Elliptic Equations

Convex Analysis and Nonlinear Geometric Elliptic Equations

Author: Ilya J. Bakelman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 524

ISBN-13: 3642698816

DOWNLOAD EBOOK

Investigations in modem nonlinear analysis rely on ideas, methods and prob lems from various fields of mathematics, mechanics, physics and other applied sciences. In the second half of the twentieth century many prominent, ex emplary problems in nonlinear analysis were subject to intensive study and examination. The united ideas and methods of differential geometry, topology, differential equations and functional analysis as well as other areas of research in mathematics were successfully applied towards the complete solution of com plex problems in nonlinear analysis. It is not possible to encompass in the scope of one book all concepts, ideas, methods and results related to nonlinear analysis. Therefore, we shall restrict ourselves in this monograph to nonlinear elliptic boundary value problems as well as global geometric problems. In order that we may examine these prob lems, we are provided with a fundamental vehicle: The theory of convex bodies and hypersurfaces. In this book we systematically present a series of centrally significant results obtained in the second half of the twentieth century up to the present time. Particular attention is given to profound interconnections between various divisions in nonlinear analysis. The theory of convex functions and bodies plays a crucial role because the ellipticity of differential equations is closely connected with the local and global convexity properties of their solutions. Therefore it is necessary to have a sufficiently large amount of material devoted to the theory of convex bodies and functions and their connections with partial differential equations.


Contemporary Research in Elliptic PDEs and Related Topics

Contemporary Research in Elliptic PDEs and Related Topics

Author: Serena Dipierro

Publisher: Springer

Published: 2019-07-12

Total Pages: 502

ISBN-13: 303018921X

DOWNLOAD EBOOK

This volume collects contributions from the speakers at an INdAM Intensive period held at the University of Bari in 2017. The contributions cover several aspects of partial differential equations whose development in recent years has experienced major breakthroughs in terms of both theory and applications. The topics covered include nonlocal equations, elliptic equations and systems, fully nonlinear equations, nonlinear parabolic equations, overdetermined boundary value problems, maximum principles, geometric analysis, control theory, mean field games, and bio-mathematics. The authors are trailblazers in these topics and present their work in a way that is exhaustive and clearly accessible to PhD students and early career researcher. As such, the book offers an excellent introduction to a variety of fundamental topics of contemporary investigation and inspires novel and high-quality research.


The Ricci Flow: Techniques and Applications

The Ricci Flow: Techniques and Applications

Author: Bennett Chow

Publisher: American Mathematical Soc.

Published: 2010-04-21

Total Pages: 542

ISBN-13: 0821846612

DOWNLOAD EBOOK

The Ricci flow uses methods from analysis to study the geometry and topology of manifolds. With the third part of their volume on techniques and applications of the theory, the authors give a presentation of Hamilton's Ricci flow for graduate students and mathematicians interested in working in the subject, with an emphasis on the geometric and analytic aspects. The topics include Perelman's entropy functional, point picking methods, aspects of Perelman's theory of $\kappa$-solutions including the $\kappa$-gap theorem, compactness theorem and derivative estimates, Perelman's pseudolocality theorem, and aspects of the heat equation with respect to static and evolving metrics related to Ricci flow. In the appendices, we review metric and Riemannian geometry including the space of points at infinity and Sharafutdinov retraction for complete noncompact manifolds with nonnegative sectional curvature. As in the previous volumes, the authors have endeavored, as much as possible, to make the chapters independent of each other. The book makes advanced material accessible to graduate students and nonexperts. It includes a rigorous introduction to some of Perelman's work and explains some technical aspects of Ricci flow useful for singularity analysis. The authors give the appropriate references so that the reader may further pursue the statements and proofs of the various results.


Geometric Inequalities

Geometric Inequalities

Author: Yurii D. Burago

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 346

ISBN-13: 3662074419

DOWNLOAD EBOOK

A 1988 classic, covering Two-dimensional Surfaces; Domains on the Plane and on Surfaces; Brunn-Minkowski Inequality and Classical Isoperimetric Inequality; Isoperimetric Inequalities for Various Definitions of Area; and Inequalities Involving Mean Curvature.