Covers strata mechanics, numerical methods in geomechanics, water jet cutting and mechanical disintegration of rocks. The preface discusses the option of describing typical interdisciplinarity of geosciences, dealing with the processes induced by human activities in geospere, by the word geonics.
Geomechanics investigates the origin, magnitude and deformational consequences of stresses in the crust. In recent years awareness of geomechanical processes has been heightened by societal debates on fracking, human-induced seismicity, natural geohazards and safety issues with respect to petroleum exploration drilling, carbon sequestration and radioactive waste disposal. This volume explores the common ground linking geomechanics with inter alia economic and petroleum geology, structural geology, petrophysics, seismology, geotechnics, reservoir engineering and production technology. Geomechanics is a rapidly developing field that brings together a broad range of subsurface professionals seeking to use their expertise to solve current challenges in applied and fundamental geoscience. A rich diversity of case studies herein showcase applications of geomechanics to hydrocarbon exploration and field development, natural and artificial geohazards, reservoir stimulation, contemporary tectonics and subsurface fluid flow. These papers provide a representative snapshot of the exciting state of geomechanics and establish it firmly as a flourishing subdiscipline of geology that merits broadest exposure across the academic and corporate geosciences.
February issue includes Appendix entitled Directory of United States Government periodicals and subscription publications; September issue includes List of depository libraries; June and December issues include semiannual index
The thirty papers published in this book represent the latest developments in Discontinuous Deformation Analysis (DDA). The Numerical Manifold Method (NMM) and other numerical methods and their applications are also covered, as are the theoretical contributions of 3D DDA, modelling and visualization of 3D joint systems, and high-order NMM. Applications of these advances include the stability of underground works, rock slopes and boreholes.
The stability of underground and surface geotechnical structures during and after excavation is of great concern as any kind of instability may result in damage to the environment as well as time-consuming high cost repair work. The forms of instability, their mechanisms and the conditions associated with them must be understood so that correct stabilisation of the structure through rock reinforcement and/or rock support can be undertaken. Rock Reinforcement and Rock Support elucidates the reinforcement functions of rock bolts/rock anchors and support systems consisting of shotcrete, steel ribs and concrete liners and evaluates their reinforcement and supporting effects both qualitatively and quantitatively. It draws on the research activities and practices carried out by the author for more than three decades and has culminated in a most extensive up-to-date and a complete treatise on rock reinforcement and rock support.
In November 2015, Buenos Aires, Argentina became the location of several important events for geo-professionals, with the simultaneous holding of the 8th South American Congress on Rock Mechanics (SCRM), the 15th Pan-American Conference on Soil Mechanics and Geotechnical Engineering (XV PCSMGE), and the 6th International Symposium on Deformation Characteristics of Geomaterials, as well as the 22nd Argentinean Congress of Geotechnical Engineering (CAMSIGXXII). This synergy brought together international experts, researchers, academics, professionals and geo-engineering companies in a unique opportunity to exchange ideas and discuss current and future practices in the areas of soil mechanics and rock mechanics, and their applications in civil, energy, environmental, and mining engineering. This book presents the proceedings of the 8th South American Congress on Rock Mechanics (SCRM). Topics covered include rock mechanics, rock engineering, natural resources, mining, mechanics, geology and engineering. Approximately 60% of the contributions are in English, and the remaining 40% of the contributions are in either Spanish or Portuguese.
This volume contains 18 papers from 8 countries dealing with different aspects of triggered and induced seismicity. In situ observations of the phenomenon include examples of seismicity due to reservoirs, hard-rock mines, coal mines, mine collapses, brine production caverns, fluid injections, and geothermal hot-dry-rock projects. High-frequency acoustic emission studies from laboratory experiments and hard-rock mines have also been reported. Besides providing case studies of previously unavailable observations of seismicity, the present volume contains investigations of the causes and source mechanism of seismic events, determination of source parameters, seismic hazard as related to the design of support systems for underground openings and procedures for closure of brine production caverns, and the use of seismic and non-destructive techniques in assessing rock damage, measuring dynamic elastic moduli and detecting discontinuities. This collection of papers provides an excellent indication of the state of the art, recent developments and outstanding challenges facing scientists and engineers in understanding the causes and alleviating the effects of induced seismicity.
A collection of conference proceedings on rock mechanics and rock engineering covering such topics as: foundations of dams, bridges and large structures; mining structures; formulation of geotechnical models; rock mass characterization; and recent advances in modelling.