Elevation Models for Geoscience

Elevation Models for Geoscience

Author: Cory Fleming

Publisher: Geological Society of London

Published: 2010

Total Pages: 158

ISBN-13: 9781862393134

DOWNLOAD EBOOK

Elevation data are a critical element in most geoscience applications. From geological mapping to modelling Earth systems and processes geologists need to understand the shape of the Earth's surface. Vast amounts of digital elevation data exist, from large-scale global to smaller scale regional datasets, and many datasets have been merged to improve scale and accuracy. For each application, decisions are made on which elevation data to use driven by cost, resolution and accuracy. This publication shows the current status of available digital elevation data and illustrates the key applications. The types of data assessed include: ASTER stereo satellite imagery, Shuttle Radar Topographic Mapping data, airborne laser and radar such as NEXTMap, and Multibeam Bathymetry. Applications covered include: glacial deposits, landslides, coastal erosion and other geological hazards. Technical issues discussed include: accuracy analysis, derived product creation, software comparisons and copyright considerations. This volume is a comprehensive look at elevation models for geoscience.


A Stratigraphical Basis for the Anthropocene

A Stratigraphical Basis for the Anthropocene

Author: C.N. Waters

Publisher: Geological Society of London

Published: 2014-06-05

Total Pages: 317

ISBN-13: 1862396280

DOWNLOAD EBOOK

Humankind has pervasively influenced the Earth’s atmosphere, biosphere, geosphere, hydrosphere and cryosphere, arguably to the point of fashioning a new geological epoch, the Anthropocene. To constrain the Anthropocene as a potential formal unit within the Geological Time Scale, a spectrum of indicators of anthropogenically-induced environmental change is considered, and shown as stratigraphical signals that may be used to characterize an Anthropocene unit, and to recognize its base. This volume describes a range of evidence that may help to define this potential new time unit and details key signatures that could be used in its definition. These signatures include lithostratigraphical (novel deposits, minerals and mineral magnetism), biostratigraphical (macro- and micro-palaeontological successions and human-induced trace fossils) and chemostratigraphical (organic, inorganic and radiogenic signatures in deposits, speleothems and ice and volcanic eruptions). We include, finally, the suggestion that humans have created a further sphere, the technosphere, that drives global change.