Developed by three experts to coincide with geology lab kits, this laboratory manual provides a clear and cohesive introduction to the field of geology. Introductory Geology is designed to ease new students into the often complex topics of physical geology and the study of our planet and its makeup. This text introduces readers to the various uses of the scientific method in geological terms. Readers will encounter a comprehensive yet straightforward style and flow as they journey through this text. They will understand the various spheres of geology and begin to master geological outcomes which derive from a growing knowledge of the tools and subjects which this text covers in great detail.
This lab manual is accessible to science and nonscience majors and also provides a strong backĀground for geology and other science majors. Concepts carry over from one lab to the next and are reinforced so that at the end of the semester, the students have experience at interpreting the rock record and an understanding of how the process of science works.
For Introductory Geology courses This user-friendly, best-selling lab manual examines the basic processes of geology and their applications to everyday life. Featuring contributions from over 170 highly regarded geologists and geoscience educators, along with an exceptional illustration program by Dennis Tasa, Laboratory Manual in Physical Geology, Tenth Edition offers an inquiry and activities-based approach that builds skills and gives students a more complete learning experience in the lab. The text is available with MasteringGeology(tm); the Mastering platform is the most effective and widely used online tutorial, homework, and assessment system for the sciences. Note: You are purchasing a standalone product; Mastering does not come packaged with this content. If you would like to purchase both the physical text and Mastering search for ISBN-10: 0321944526/ISBN-13: 9780321944528. That package includes ISBN-10: 0321944518/ISBN-13: 9780321944511 and ISBN-10: 0321952200/ ISBN-13: 9780321952202 With Learning Catalytics you can:
Zumberge's Laboratory Manual for Physical Geology, 15e is written for the freshman-level laboratory course in physical geology. In this lab, students study Earth materials, geologic interpretation of topographic maps, aerial photographs and Earth satellite imagery, structural geology and plate tectonics and related phenomena. With over 30 exercises, professors have great flexibility when developing the syllabus for their physical geology lab course. The ease of use, tremendous selection, and tried and true nature of the labs selected have made this lab manual one of the leading selling physical geology lab manuals.
This easy-to-use, easy-to-learn-from laboratory manual for environmental geology employs an interactive question-and-answer format that engages the student right from the start of each exercise. Tom Freeman, an award-winning teacher with 30 years experience, takes a developmental approach to learning that emphasizes principles over rote memorization. His writing style is clear and inviting, and he includes scores of helpful hints to coach students as they tackle problems.
This is a discount Black and white version. Some images may be unclear, please see BCCampus website for the digital version.This book was born out of a 2014 meeting of earth science educators representing most of the universities and colleges in British Columbia, and nurtured by a widely shared frustration that many students are not thriving in courses because textbooks have become too expensive for them to buy. But the real inspiration comes from a fascination for the spectacular geology of western Canada and the many decades that the author spent exploring this region along with colleagues, students, family, and friends. My goal has been to provide an accessible and comprehensive guide to the important topics of geology, richly illustrated with examples from western Canada. Although this text is intended to complement a typical first-year course in physical geology, its contents could be applied to numerous other related courses.
This manual of geology discusses the major aspects of descriptive geology, notably rock types and structural studies. The basic techniques of rock descriptions are also dealt with at length.
This book is a welcome introduction and reference for users and innovators in geochronology. It provides modern perspectives on the current state-of-the art in most of the principal areas of geochronology and thermochronology, while recognizing that they are changing at a fast pace. It emphasizes fundamentals and systematics, historical perspective, analytical methods, data interpretation, and some applications chosen from the literature. This book complements existing coverage by expanding on those parts of isotope geochemistry that are concerned with dates and rates and insights into Earth and planetary science that come from temporal perspectives. Geochronology and Thermochronology offers chapters covering: Foundations of Radioisotopic Dating; Analytical Methods; Interpretational Approaches: Making Sense of Data; Diffusion and Thermochronologic Interpretations; Rb-Sr, Sm-Nd, Lu-Hf; Re-Os and Pt-Os; U-Th-Pb Geochronology and Thermochronology; The K-Ar and 40Ar/39Ar Systems; Radiation-damage Methods of Geo- and Thermochronology; The (U-Th)/He System; Uranium-series Geochronology; Cosmogenic Nuclides; and Extinct Radionuclide Chronology. Offers a foundation for understanding each of the methods and for illuminating directions that will be important in the near future Presents the fundamentals, perspectives, and opportunities in modern geochronology in a way that inspires further innovation, creative technique development, and applications Provides references to rapidly evolving topics that will enable readers to pursue future developments Geochronology and Thermochronology is designed for graduate and upper-level undergraduate students with a solid background in mathematics, geochemistry, and geology. "Geochronology and Thermochronology is an excellent textbook that delivers on the difficult balance between having an appropriate level of detail to be useful for an upper undergraduate to graduate-level class or research reference text without being too esoteric for a more general audience, with content and descriptions that are understandable and enlightening to the non-specialist. I would recommend this textbook for anyone interested in the history, principles, and mechanics of geochronology and thermochronology." --American Mineralogist, 2021 Read an interview with the editors to find out more: https://eos.org/editors-vox/the-science-of-dates-and-rates
"Structural Geology has been taught, largely unchanged, for the last 50 years or more. The lecture part of most courses introduces students to concepts such as stress and strain, as well as more descriptive material like fault and fold terminology. The lab part of the course usually focuses on practical problem solving, mostly traditional me-thods for describing quantitatively the geometry of structures. While the lecture may introduce advanced concepts such as tensors, the lab commonly trains the student to use a combination of graphical methods like orthographic or spherical projection, as well as a variety of plane trigonometry solutions to various problems. This leads to a disconnect between lecture concepts that require a very precise understanding of coor-dinate systems (e.g., tensors) and lab methods that appear to have no common spatial or mathematical foundation. Students have no chance to understand that, for example, seemingly unconnected constructions like down-plunge projections and Mohr circles share a common mathematical heritage: they are both graphical representations of coordinate transformations"--Provided by publisher.